Устройство катера на воздушной подушке своими руками. Катер на воздушной подушке «Пума. Назвался судном — полезай в воду

Окончательной конструкцией, как и неформальным названием нашей поделки, мы обязаны коллеге из газеты «Ведомости». Увидев один из испытательных «взлетов» на парковке издательства, она воскликнула: «Да это же ступа Бабы-яги!» Такое сравнение нас несказанно обрадовало: ведь мы как раз искали способ оснастить наш катер на воздушной подушке рулем и тормозом, и способ нашелся сам собой — мы дали в руки пилоту метлу!

На вид это одна из самых глупых поделок, которые мы когда-либо создавали. Но, если вдуматься, она представляет собой весьма зрелищный физический эксперимент: оказывается, слабенький воздушный поток от ручной воздуходувки, предназначенной для сметания невесомых жухлых листьев с дорожек, способен вознести над землей человека и с легкостью перемещать его в пространстве. Несмотря на весьма внушительный вид, построить такой катер проще простого: при четком соблюдении инструкций это потребует всего пару часов непыльной работы.

С помощью веревки и маркера начертите на фанерном листе круг диаметром 120 см и выпилите днище лобзиком. Сразу же изготовьте второй такой же круг.


Совместите два круга и просверлите в них насквозь 100-миллиметровое отверстие с помощью коронки. Сохраните деревянные диски, извлеченные из коронки, один из них послужит центральной «пуговицей» воздушной подушки.


Расстелите душевую шторку на столе, положите сверху днище и закрепите полиэтилен мебельным степлером. Излишек полиэтилена обрежьте, отступив пару сантиметров от скоб.


Проклейте край юбки армированным скотчем в два ряда с 50-процентным перекрытием. Это сделает юбку герметичной и позволит избежать потерь воздуха.


Разметьте центральную часть юбки: в середине будет располагаться «пуговица», а вокруг нее шесть отверстий диаметром 5 см. Вырежьте отверстия макетным ножом.


Тщательно проклейте центральную часть юбки, включая отверстия, армированным скотчем. Накладывайте ленты с 50-процентным перекрытием, наклейте два слоя скотча. Повторно прорежьте отверстия макетным ножом и прикрутите центральную «пуговицу» саморезами. Юбка готова.


Переверните днище и прикрутите к нему второй фанерный круг. 12-миллиметровая фанера удобна в обработке, но она недостаточно жесткая, чтобы выдержать требуемые нагрузки без деформации. Два слоя такой фанеры придутся в самый раз. Наденьте по краям круга теплоизоляцию для сантехнических труб и закрепите ее степлером. Она послужит декоративным бампером.


Используйте манжеты и уголки для 100-миллиметровых вентиляционных воздуховодов, чтобы подключить воздуходувку к юбке. Закрепите двигатель с помощью уголков и стяжек.


Заведите двигатель и испытайте катер, стоя на коленях. Контролируя балансировку судна, установите на платформу кресло и закрепите его саморезами.

Вертолет и шайба

Вопреки распространенному заблуждению, катер опирается вовсе не на 10-сантиметровый слой сжатого воздуха, иначе это был бы уже вертолет. Воздушная подушка представляет собой что-то вроде надувного матраса. Полиэтиленовая пленка, которой затянуто днище аппарата, заполняется воздухом, растягивается и превращается в подобие надувного круга.

Пленка очень плотно прилегает к поверхности дороги, образуя широкое пятно контакта (практически по всей площади днища) с отверстием в центре. Из этого отверстия поступает воздух под давлением. По всей площади контакта между пленкой и дорогой образуется тончайший слой воздуха, по которому аппарат легко скользит в любом направлении. Благодаря надувной юбке даже небольшого количества воздуха достаточно для хорошего скольжения, так наша ступа гораздо больше похожа на шайбу в аэрохоккее, чем на вертолет.


Ветер под юбкой

Обычно мы не печатаем в рубрике «мастер-класс» точных чертежей и настоятельно рекомендуем читателям подключать к процессу творческое воображение, как можно больше экспериментируя с конструкцией. Но это не тот случай. Несколько попыток слегка отступить от популярного рецепта стоили редакции пары дней лишней работы. Не повторяйте наших ошибок — четко следуйте инструкции.

Катер должен быть круглым, как летающая тарелка. Судну, опирающемуся на тончайшую прослойку воздуха, необходим идеальный баланс: при малейшем дефекте развесовки весь воздух будет выходить с недогруженной стороны, а более тяжелый борт всем весом ляжет на землю. Симметричная круглая форма днища поможет пилоту легко находить баланс, слегка изменяя положение тела.


Для изготовления днища возьмите 12-миллиметровую фанеру, с помощью веревки и маркера начертите круг диаметром 120 см и выпилите деталь электрическим лобзиком. Юбка делается из полиэтиленовой душевой шторки. Выбор шторки — пожалуй, самый ответственный этап, на котором решается судьба будущей поделки. Полиэтилен должен быть как можно более толстым, но строго однородным и ни в коем случае не армированным тканью или декоративными лентами. Клеенка, брезент и прочие воздухонепроницаемые ткани не подходят для постройки судна на воздушной подушке.

В погоне за прочностью юбки мы совершили нашу первую ошибку: плохо тянущаяся клеенчатая скатерть не смогла плотно прижаться к дороге и сформировать широкое пятно контакта. Площади небольшого «пятнышка» не хватило, чтобы заставить тяжелую машину скользить.

Оставлять припуск, чтобы впустить под плотную юбку больше воздуха, — не выход. При надувании такая подушка образует складки, которые будут выпускать воздух и препятствовать образованию равномерной пленки. А вот плотно прижатый к днищу полиэтилен, растягиваясь при нагнетании воздуха, образует идеально гладкий пузырь, плотно облегающий любые неровности дороги.


Скотч — всему голова

Изготовить юбку несложно. Надо расстелить полиэтилен на верстаке, накрыть сверху круглой фанерной заготовкой с предварительно просверленным отверстием для подачи воздуха и тщательно закрепить юбку мебельным степлером. С задачей справится даже самый простой механический (не электрический) степлер с 8-миллиметровыми скобами.

Армированный скотч — очень важный элемент юбки. Он укрепляет ее там, где необходимо, сохраняя эластичность остальных участков. Обратите особое внимание на усиление полиэтилена под центральной «пуговицей» и в области отверстий для подачи воздуха. Скотч накладывайте с 50%-ным перекрытием и в два слоя. Полиэтилен должен быть чистым, иначе скотч может отклеиться.

Недостаточное усиление в центральной части стало причиной забавной аварии. Юбка порвалась в районе «пуговицы», и наша подушка превратилась из «бублика» в полукруглый пузырь. Пилот с округлившимися от удивления глазами вознесся на добрые полметра над землей и спустя пару мгновений рухнул вниз — юбка окончательно лопнула и выпустила весь воздух. Именно этот инцидент привел нас к ошибочной мысли использовать вместо душевой шторки клеенку.


Еще одно заблуждение, постигшее нас в процессе строительства катера, заключалось в уверенности, что мощности много не бывает. Мы раздобыли большую ранцевую воздуходувку Hitachi RB65EF с объемом двигателя 65 см 3 . У этой зверь-машины есть одно веское преимущество: она комплектуется гофрированным шлангом, с помощью которого очень легко подключить вентилятор к юбке. А вот мощность 2,9 кВт — явный перебор. Полиэтиленовой юбке нужно давать ровно такой объем воздуха, которого будет достаточно для подъема машины на 5−10 см над землей. Если переборщить с газом, полиэтилен не выдержит давления и порвется. Именно так и случилось с нашей первой машиной. Так что будьте уверены: если в вашем распоряжении есть хоть какая-нибудь воздуходувка, она подойдет для проекта.

Полный вперед!

Обычно у судов на воздушной подушке есть как минимум два винта: один маршевый, сообщающий машине поступательное движение вперед, и один вентилятор, нагнетающий воздух под юбку. Как же наша «летающая тарелка» будет двигаться вперед, и сможем ли мы обойтись одной воздуходувкой?

Этот вопрос мучил нас ровно до первых успешных испытаний. Оказалось, юбка так хорошо скользит по поверхности, что даже малейшего изменения баланса достаточно, чтобы аппарат сам собой поехал в ту или иную сторону. По этой причине устанавливать на машину кресло нужно только на ходу, чтобы правильно сбалансировать машину, и лишь затем привинтить ножки к днищу.


Мы попробовали вторую воздуходувку в качестве маршевого двигателя, но результат не впечатлил: узкое сопло дает быстрый поток, но объема проходящего через него воздуха недостаточно, чтобы создать мало-мальски заметную реактивную тягу. Что вам действительно понадобится при движении, так это тормоз. Вот на эту роль идеально подходит метла Бабы-яги.

Назвался судном — полезай в воду

К сожалению, наша редакция, а вместе с ней и мастерская располагаются в каменных джунглях, вдали даже от самых скромных водоемов. Поэтому мы не смогли спустить наш аппарат на воду. А ведь теоретически все должно работать! Если постройка катера станет для вас дачным развлечением в жаркий летний день, испытайте его на мореходность и поделитесь с нами рассказом о своих успехах. Разумеется, выводить катер на воду нужно с пологого берега на крейсерском дросселе, с полностью надутой юбкой. Допустить потопление никак нельзя — погружение в воду означает неминуемую гибель воздуходувки от гидроудара.

Качество дорожной сети в нашей стране оставляет желать лучшего. Строительство на некоторых направлениях нецелесообразно по экономическим причинам. С перемещением людей и грузов в таких местностях отлично справятся транспортные средства, работающие на иных физических принципах. Полноразмерные суда на своими руками в кустарных условиях не построить, а вот масштабные модели - вполне возможно.

Транспортные средства этого вида способны перемещаться по любому относительно ровному покрытию. Это могут быть и чистое поле, и водоем, и даже болото. Стоит заметить, что на таких непригодных для другого транспорта покрытиях СВП способно развивать достаточно высокую скорость. Основным недостатком такого транспорта является необходимость больших энергозатрат на создание воздушной подушки и, как следствие, большой расход топлива.

Физические принципы работы СВП

Высокая проходимость транспортных средств такого типа обеспечивается низким удельным давлением, которое оно оказывает на поверхность. Это объясняется довольно просто: площадь контакта транспортного средства равна или даже превышает площадь самого транспортного средства. В энциклопедических словарях СВП определяются как суда с динамически создаваемой опорной тягой.

Крупные и на воздушной подушке зависают над поверхностью на высоте от 100 до 150 мм. В специальном устройстве под корпусом создается воздуха. Машина отрывается от опоры и теряет с ней механический контакт, в результате чего сопротивление движению становится минимальным. Основные затраты энергии идут на поддержание воздушной подушки и разгон аппарата в горизонтальной плоскости.

Составление проекта: выбор рабочей схемы

Для изготовления действующего макета СВП необходимо выбрать эффективную для заданных условий конструкцию корпуса. Чертежи судов на воздушной подушке можно найти на специализированных ресурсах, где размещены патенты с подробным описанием разных схем и способов их реализации. Практика показывает, что одним из самых удачных вариантов для таких сред, как вода и твердый грунт, является камерный способ формирования воздушной подушки.

В нашей модели будет реализована классическая двухмоторная схема с одним нагнетающим силовым приводом и одним толкающим. Малоразмерные суда на воздушной подушке своими руками изготовленные, по сути, являются игрушками-копиями больших аппаратов. Однако они наглядно демонстрируют преимущества использования таких средств передвижения перед остальными.

Изготовление корпуса судна

При выборе материала для корпуса судна основными критериями являются простота в обработке и невысокий на воздушной подушке относятся к категории амфибийных, а значит, в случае его несанкционированной остановки не произойдет затопления. Корпус судна выпиливается из фанеры (толщиной 4 мм) по заранее подготовленному лекалу. Для выполнения этой операции используется лобзик.

Самодельное судно на воздушной подушке имеет надстройки, которые для снижения веса лучше сделать из пенополистирола. Для придания им большего внешнего сходства с оригиналом снаружи производится оклеивание деталей пеноплексом и окрашивание. Стекла кабины делаются их прозрачного пластика, а остальные детали вырезаются из полимеров и выгибаются из проволоки. Максимальная детализация - ключ к сходству с прототипом.

Выделка воздушной камеры

При изготовлении юбки используется плотная ткань из полимерного водонепроницаемого волокна. Раскрой осуществляется по чертежу. Если у вас нет опыта переноса эскизов на бумагу вручную, то их можно распечатать на широкоформатном принтере на плотной бумаге, а потом вырезать обычными ножницами. Подготовленные детали сшиваются между собой, швы должны быть двойными и плотными.

Суда на воздушной подушке, своими руками выполненные, до включения нагнетающего двигателя опираются корпусом на грунт. Юбка частично сминается и располагается под ним. Склеивание деталей производится водостойким клеем, стык закрывается корпусом надстройки. Такое соединение обеспечивает высокую надежность и позволяет сделать монтажные стыки незаметными. Из полимерных материалов выполняется и другие внешние детали: ограждение диффузора винта и тому подобное.

Силовая установка

В составе силовой установки присутствует два двигателя: нагнетающий и маршевый. В модели используются бесколлекторные электромоторы и двухлопастные винты. Дистанционное управление ими осуществляется при помощи специального регулятора. Источником питания для силовой установки являются два аккумулятора суммарной емкостью в 3000 mAh. Их заряда достаточно для получасового использования модели.

Самодельные суда на воздушной подушке управляются дистанционно по радиоканалу. Все компоненты системы - радиопередатчик, приемник, сервоприводы - заводского изготовления. Установка, подключение и тестирование их производится в соответствии с инструкцией. После включения питания выполняется пробный прогон двигателей с постепенным увеличением мощности до образования устойчивой воздушной подушки.

Управление моделью СВП

Суда на воздушной подушке, своими руками изготовленные, как уже отмечалось выше, имеют дистанционное управление по УКВ-каналу. На практике это выглядит следующим образом: в руках владельца находится радиопередатчик. Запуск двигателей выполняется нажатием на соответствующую кнопку. Управление скоростью и изменение направления движения производятся джойстиком. Машинка проста в маневрировании и достаточно точно выдерживает курс.

Испытания показали, что СВП уверенно перемещается по относительно ровной поверхности: по воде и по суше с одинаковой легкостью. Игрушка станет любимым развлечением для ребенка в возрасте от 7-8 лет с достаточно развитой мелкой моторикой пальцев рук.

Для освоения природных ресурсов отдаленных районов нашей страны требуются транспортные средства повышенной проходимости, обладающие свойством амфибийности, то есть способностью переходить с воды на сушу и обратно. Однако практика показала, что в ряде труднодоступных и климатически суровых районов, характеризующихся большим количеством рек, озер и болот, использование гусеничных или колесных вездеходов крайне затруднено, а подчас и невозможно.

Это связано с тем, что здесь особенно сильно проявляются держащие свойства грунта. Известно, что на каждый квадратный метр поверхности корпуса машины, контактирующей с грунтом, налипает от 300 кг влажных песков до 4000 кг туго пластичных глин. Кроме того, из-за присасывания к грунту во время длительной стоянки или вынужденной остановки машина лишается возможности двигаться.

В зимних условиях движение затруднено тем, что вне дорог мала несущая способность снежного покрова. По льду рек и озер особенно сложно перемещаться в периоды ледостава, таяния и разрушения льда, когда даже плавающая техника не может преодолевать его сопротивление.

Следует также отметить, что в последнее время существенно возросли требования к экологичности транспорта, в частности, введены ограничения на степень разрушения им верхних слоев почвы.

С учетом всех перечисленных факторов наиболее целесообразным считают использование транспортных средств на воздушной подушке, у которых давление на грунт не превышает 2- 5 кПа, что существенно ниже, чем у гусеничных транспортеров-снегоболотоходов (17-24 кПа). Благодаря этому они обладают лучшей проходимостью и не разрушают поверхностный слой почвы.

Практическое применение катеров и судов на воздушной подушке в нашей стране было начато с 1935 г. Группой под руководством конструктора и ученого В. Левкова был проведен ряд исследований. За период до 1941 г. они создали и опробовали 15 аппаратов на воздушных подушках массой от 2,25 до 14,7 т. Например, в 1937 г. дюралевый катер на воздушной подушке Л-5 в ходе испытаний развил скорость 137 км/ч. Уже на раннем этапе развития судов на воздушной подушке была выявлена их уникальная способность двигаться над водой, болотом, песчаными перекатами, льдом залива и равнинной местностью.



В ходе эксплуатации судов и катеров на воздушной подушке накапливался опыт, стала определяться их специализация. Если раньше они использовались преимущественно на воде или в качестве амфибий, то теперь появились их наземные варианты - самоходные и буксируемые с помощью тягача, а также платформы на воздушной подушке, предназначенные для перевозки различных грузов в труднодоступных районах. Однако основным, магистральным направлением развития транспортных средств на воздушной подушке является создание судов и катеров, в наибольшей степени отвечающих потребностям народного хозяйства.

Воздушная подушка представляет собой полость под корпусом транспортного средства, в которую непрерывно нагнетается воздух под давлением более высоким, чем атмосферное Ее границы образованы твердыми или мягкими стенками, а также их комбинацией. Твердые стенки воздушной подушки судна принято называть скегами, а мягкие - гибким ограждением.

Устойчивость воздушной подушки обеспечивается за счет истечения воздуха, выходящего через узкий зазор между нижней кромкой стенок ограждения и опорной поверхностью. Струи воздуха вместе с податливым ограждением обеспечивают равномерное отслеживание неровностей грунта и взволнованной водной поверхности. Аппараты с бортовыми скегами, но с носовыми и кормовыми гибкими секциями стали называть скеговыми, а имеющие гибкое ограждение по всему периметру воздушной подушки - амфибийными катерами на воздушной подушке.

Суда на воздушной подушке - видео

Гибкое ограждение изготавливают из различных сортов химического волокна, образующего сетчатую тканевую основу, покрытую резиноподобными полимерами - типа неопрена, полиуретана, с добавками натуральных каучуков. Добавки способствуют сохранению эластичности материала даже при значительном понижении температуры воздуха (до -40-50 °С).

На практике хорошо зарекомендовало себя двухъярусное гибкое ограждение, состоящее из баллона-ресивера (верхний ярус) и набора съемных элементов в виде примыкающих друг к другу сегментов (нижний ярус). Воздух поступает из нагнетателя в ресивер, а из него через систему отверстий в полость воздушной подушки, ограниченную съемными элементами. В ресивере создается более высокое давление, чем в воздушной подушке, благодаря этому он выполняет формообразующую и амортизирующую роль при восприятии динамических нагрузок. Съемные элементы, раздвигаясь, «обтекают» сосредоточенные препятствия, при этом сохраняется заданный воздушный зазор. Это позволяет преодолевать пни, валуны и кочки высотой 0,5-0,8 м, что весьма затруднительно для гусеничных машин.

Увеличению остойчивости подобных транспортных средств способствует разделение полости воздушной подушки на отдельные отсеки (камеры) продольными и поперечными килями. Таким образом предотвращается возможность наиболее опасной аварии - опрокидывания вследствие подлома и затягивания гибкого ограждения под корпус. Энергозатраты на образование воздушной подушки, а также неизбежные потери части полезного объема под устройство каналов, подводящих воздух к ресиверу от нагнетателей, компенсируют, как правило, за счет повышения эффективности движителей.

Суда-амфибии на воздушной подушке

В амфибийных судах на воздушной подушке чаще используют движитель аэродинамического типа, например, воздушный винт. Его размещают в кольцевой насадке, что способствует увеличению сечения отбрасываемой воздушной струи по сравнению с открытым винтом. В результате чего увеличивается тяга и снижается шум при работе.

Другим способом, позволяющим увеличить тяговые характеристики судов на воздушной подушке, является применение, противоположно вращающихся винтов, которые располагают попарно. Стремление сохранить величину тяги воздушных винтов и при этом уменьшить их диаметр привело к созданию вентиляторных движителей. Они имеют увеличенные число лопастей и длину кольцевой насадки. Движители такого типа по конструкции максимально близки к осевым нагнетателям.

К аэродинамическим движителям относят также и воздушно-сопловые, в которых источником тяги является струя воздуха, истекающая через сопло из полости воздушной подушки или из выходного канала нагнетателя. Сопловой движитель судна на воздушной подушке прост по конструкции, однако его кпд в 2 раза ниже, чем у винтового. Поэтому в качестве маршевого движителя, как правило, применяют воздушный винт. Сопловой же в основном используют в качестве подруливающего устройства, обеспечивающего выполнение маневров на малых скоростях.

Большей эффективности подъемной силы воздушной подушки стремятся достигнуть снижением массы корпуса судна. Поэтому для его изготовления используют детали из легких алюминиевых сплавов, которые соединяют заклепками или сваркой. Надстройки и рубки скоростных аппаратов часто делают из стеклопластика.

При выборе двигателей для катеров и судов предпочтение отдают, как правило, автомобильным (карбюраторным или дизельным) с воздушным охлаждением. Для распределения мощности на валы нагнетателей и движителей, которые, как правило, располагаются на различных уровнях, применяют плоскозубчатые ременные передачи.

Уменьшение массы наряду с использованием благоприятных аэродинамических форм и совершенных двигателей позволяет транспортным средствам на воздушной подушке на скоростях, превышающих 50 км/ч, успешно конкурировать не только с быстроходными водоизмещающими судами, но и с глиссерами и судами на подводных крыльях.

Рассматривая амфибийные качества подобных судов, следует достаточно критично оценить распространенное представление о них как о неограниченно всепогодном, вездеходном и всесезонном транспортном средстве. Необходимо помнить, что отсутствие контакта с опорной поверхностью кроме преимуществ порождает и некоторые проблемы. Становится, например, сложно преодолевать подъемы, избегать бокового сноса и ветрового дрейфа.

Этапы развития судов на воздушной подушке в России

В нашей стране развитие транспортных средств на воздушной подушке прошло несколько этапов. Так, на заводе «Красное Сормово» в Горьком вначале был построен экспериментальный 5-местный катер «Радуга» массой 3,3 т с авиационным поршневым двигателем мощностью 162 кВт (220 л. с). Он имел жесткосопловую схему образования воздушной подушки, его скорость достигала 110 км/ч. Позднее катер был оборудован различными типами гибкого ограждения и продемонстрировал удовлетворительные амфибийные качества в летнее и зимнее время, мог преодолевать уклоны до 10°, переходить через поля плавающих бревен.

Несколько позднее было разработано и испытано судно на воздушной подушке «Сормович» пассажировместимостью 50 человек. В качестве двигателя на нем применялась авиационная турбина мощностью 1700 кВт (2300 л. с). Корпус судна был изготовлен из алюминиевого сплава. При массе 36,4 т машина развила скорость 100 км/ч. В ходе испытаний на аварийное торможение было установлено, что перегрузочные ускорения при отключении главного двигателя на скорости 50-70 км/ч составляют 0,2-0,5 g, что обусловило возможность эксплуатации судна с этими скоростями на мелководье. В конце испытаний «Сормович» совершил пробную перевозку пассажиров по линии протяженностью 274 км. В зимнюю навигацию была доказана возможность его перемещения над ледовым полем толщиной 35-40 см с отдельными торосами высотой 40-50 см и снежным покровом глубиной до полуметра.

Затем конструкторы вернулись к созданию новых вариантов катера «Радуга». Было построено судно на воздушных подушках «Радуга-3», предназначенное для перевозки сменных вахт бурильщиков в районе Сургутского нефтегазоместорождения. Этот 10-местный катер с дизельным двигателем мощностью 220 кВт (298 л. с.) и скоростью 70 км/ч изготовлен из легкого сплава и имеет массу 3,7 т. Нагнетатель типа осевого вентилятора выполняет две функции: создает воздушную подушку и обеспечивает движение.

В Центральном конструкторском бюро «Нептун» был глубоко проанализирован весь существующий опыт создания средств на воздушной подушке, основанный на использовании преимущественно авиационной техники. В результате установили, что из-за относительно высокой строительной стоимости и больших эксплуатационных затрат коммерческая эксплуатация таких судов убыточна.

С учетом этих факторов сформулировали основные направления дальнейшей деятельности: разработка сварного корпуса, использование дизельной энергетической установки, применение воздушных винтов с упрощенным приводом в направляющих насадках через плоскозубчатые ременные передачи. К научной и экспериментальной проработке проектов были привлечены специалисты ЦНИИ имени академика А. Н. Крылова.

Катер на воздушной подушке «Барс»

Первым изготовили малый катер на воздушной подушке «Барс», который сразу нашел применение в народном хозяйстве, хотя упомянутые технические решения были реализованы на нем еще не в полной мере. К настоящему времени несколько десятков этих 8-местных аппаратов, оснащенных авиационными двигателями мощностью 176 кВт (230 л. с), несут почтовую службу в системе Минсвязи РСФСР, выполняют поисково-спасательные функции, а также успешно используются в качестве патрульных судов в системе МВД СССР. Эксплуатируются они в труднодоступных местах, включая мелководные соленые озера, участки засушливых степей, песчаные отмели, зоны лесосплава, как в летних, так и в зимних условиях. Как показала практика, эти катеры оказались значительно эффективней применявшихся ранее серийных аэросаней-амфибий. При массе 2,2 т максимальная скорость «Барса» 80 км/ч.


Катер на воздушной подушке типа «Гепард» имеет корпус из алюминиевых сплавов марок АМг5 и АМг61. На нем установлены два воздушных винта в кольцевых насадках. Благодаря специальной профилировке лопастей уменьшилась частота вращения винтов и снизился уровень шума при их работе. На входной кромке лопастей, выполненных из упрочненного стеклопластика, предусмотрена защитная накладка из нержавеющей стали.

Воздушная подушка образуется за счет подачи воздуха от центробежного нагнетателя, рабочее колесо которого снабжено стеклопластиковыми профилированными лопатками. Крутящий момент от автомобильного двигателя ЗМЗ-53 мощностью 88 кВт (120 л. с.) передается к нагнетателю с помощью карданных валов и плоскозубчатых ременных передач. Предусмотрена возможность отключения трансмиссии от двигателя, что облегчает его запуск при низких температурах. Для выдерживания курса, а также для управления дифферентом катера за кольцевыми насадками установлены вертикальные и горизонтальные аэродинамические рули.

Рубка имеет теплоизоляционное покрытие и снабжена системой воздушного обогрева. С помощью блоков плавучести, расположенных под навесными секциями, обеспечивается удержание судна на плаву при затоплении любого отсека. Это 4-местное малое судно массой 1,8 т развивает на воде скорость 60 км/ч, а на твердой ровной поверхности 70 км/ч и используется спасательными службами, водной милицией, различными административными подразделениями природных заказников, почтовыми службами, лесозаготовительными, нефтегазовыми и энергетическими предприятиями, крупными охотничьими хозяйствами Сибири. Серийное производство «Гепардов» было освоено на Свирской судоверфи.

18-местный пассажирский катер на воздушной подушке «Пума» оснащен двумя бензиновыми двигателями ЗМЗ-53. Одной из его модификаций является реанимационный катер скорой медицинской помощи, который может служить плавучей операционной. Он способен достигать самые отдаленные и труднодоступные пункты речных бассейнов.

Скорость катера, несмотря на увеличение его массы до 5,7 т, ос
талась такой же, как у «Гепарда». Каждый из двух двигателей приводит в действие спаренный центробежный нагнетатель и воздушный винт в кольцевой насадке. Возможно перемещение судна при" работе одного двигателя. В остальном конструктивные решения повторяют принятые ранее на «Гепарде».

Катер на воздушной подушке «Пума» в медицинском варианте была испытана в районах Томской области, где преодолела 400 км по торосистому льду с высотой препятствий до 0,6 м, то есть равных высоте гибкого ограждения. Пассажирский вариант катера прошел испытания на шельфе Северного Каспия, осуществив самостоятельный переход в этот район от Волгограда. Установлено, что зимой амфибийным катерам на воздушной подушке-требуется мощность главных двигателей" на 20- 30% меньше, чем летом при скорости на 5-10 км-выше.


Последней разработкой ЦКБ «Нептун» стало судно на воздушной подушке типа «Ирбис», которое имеет следующие характеристики: число мест в морском варианте вместе с экипажем 30, в речном варианте 34, масса 10,7 т, максимальная скорость хода 57 км/ч, мощность двух дизелей 280 кВт (380 л. с).

В этом судне получили развитие многие конструкторские решения, которые ранее были применены при создании «Пумы». Главным отличием является то, что «Ирбис» имеет дизельный двигатель с воздушным охлаждением вместо бензинового. Это позволило сделать судно более экономичным. Глубоко были проработаны вопросы повышения прочности корпуса. В результате обеспечена возможность движения в прибрежных морских районах с высотой волны до 1,25 м.

В ходе испытаний головного судна были осуществлены переходы по маршрутам Москва-Ленинград и Москва- Северный Каспий (около 15 тыс. км). Мореходные испытания состоялись в Финском заливе. При этом была выполнена серия измерений напряженного состояния конструкций судна при движении на волнении. По результатам испытаний судно типа «Ирбис» рекомендовано использовать при температурах окружающего воздуха от -30 "С до +40 °С на засоренных и порожистых участках рек с сильным течением, в зарослях камыша и на болотах, ледяных и заснеженных поверхностях, плавающем льду.

При сравнении судна на воздушной подушке «Ирбис» с гусеничными плавающими машинами ГТ-Т и К-61, а также с американским судном на воздушной подушке «Хаски» 2500ТД (все имеют дизельные силовые установки) по затратам на топливо для перевозки 1 т груза на 1 км было выявлено его преимущество перед всеми амфибиями в режимах движения по воде. Сопоставимые данные для суши (вернее, для ровного твердого экрана) имеются только по группе транспортных средств с бензиновыми двигателями. Из их анализа следует, что катер на воздушной подушке «Пума» сохраняет свое преимущество перед автомобилем-амфибией БАВ, если водная часть пути составляет не менее 63% его общей протяженности.

В настоящее время накопленный опыт проектирования, постройки и эксплуатации скоростных катеров и судов на воздушной подушке подтверждает способность отечественного судостроения поставлять народному хозяйству целый набор таких катеров и судов, а также возможность создания в перспективе транспортных средств, в большей степени ориентированных на озерно-морскую эксплуатацию и имеющих пассажировместимость 100 человек и более.

Постройке транспортного средства, которое позволяло бы передвигаться как по суше, так и по воде, предшествовало знакомство с историей открытия и создания оригинальных амфибий-аппаратов на воздушной подушке (АВП), изучение принципиального их устройства, сравнение различных конструкций и схем.

С этой целью я посетил немало интернетовских сайтов энтузиастов и создателей АВП (в том числе и зарубежных), познакомился с некоторыми из них очно. В конце концов, за прототип задуманного катера () взял английский «Ховеркрафт» («парящее судно»-так в Великобритании называют АВП), построенный и испытанный тамошними энтузиастами.

Наши наиболее интересные отечественные машины этого типа большей частью создавались для силовых ведомств, а в последние годы-для коммерческих целей, имели большие габариты, и потому мало подходили для любительского изготовления.

Мой аппарат на воздушной подушке (я его называю «Аэроджип»)-трехместный: пилот и пассажиры располагаются по Т-образной схеме, как на трицикле: пилот впереди посередине, а пассажиры позади рядом, один около другого.

Машина одномоторная, с разделяющимся воздушным потоком, для чего в его кольцевом канале немного ниже его центра установлена специальная панель. Катер-АВП состоит из трех основных частей: винтомоторной установки с трансмиссией, стеклопластикового корпуса и «юбки» - гибкого ограждения нижней части корпуса-так сказать, «наволочки» воздушной подушки. Корпус «Аэроджипа».

Он двойной: стеклопластиковый, состоит из внутренней и наружной оболочек. Наружная оболочка имеет довольно простую конфигурацию-это всего лишь наклонные (около 50° к горизонтали) борта без днища-плоские почти по всей ширине и слегка выгнутые в верхней ей части. Носовая часть-скругленная, а задняя имеет вид наклонного транца.

В верхней части по периметру наружной оболочки вырезаны продолговатые отверстия-пазы, а внизу снаружи закреплен в рым-болтах охватывающий оболочку трос для крепления к нему нижних частей сегментов.

Внутренняя оболочка по конфигурации посложнее, чем наружная, поскольку она имеет практически все элементы маломерного судна (скажем, шлюпки или лодки): борта, днище, выгнутые планшири, небольшую палубу в носу (нет только верхней части транца в корме),-при этом выполненные, как одна деталь.

К тому же по середине кокпита вдоль него к днищу приклеен еще отдельно отформованный туннель с банкой под сиденье водителя, В нем размещаются топливный бак и аккумулятор, а также проложен трос «газа» и трос управления рулями. В кормовой части внутренней оболочки устроен своеобразный ют, приподнятый и открытый спереди.

Он служит основанием кольцевого канала для воздушною винта, а его палуба-перемычка-разделителем воздушного потока, часть которого (поддерживающий поток) направляется в отверстие шахты, а другая часть-для создания пропульсивной силы тяги.

Все элементы корпуса: внутренняя и наружная оболочки, туннель и кольцевой канал-выклеивались по матрицам из стекломата толщиной около 2 мм на полиэфирной смоле. Конечно, эти смолы уступают винилэфирным и эпоксидным по адгезии, уровню фильтрации, усадке, а также выделению вредных веществ при высыхании, но имеют неоспоримое преимущество в цене-они значительно дешевле, что немаловажно.

Для тех, кто намеревается использовать такие смолы, напомню, что помещение, где проводятся работы, должно иметь хорошую вентиляцию и температуру не менее 22°С. Матрицы изготавливались заранее по мастер-модели из таких же стекломатов на той же полиэфирной смоле, только толщина их стенок была побольше и составляла 7-8 мм (у оболочек корпуса-около 4 мм).

Перед выклей-кой элементов с рабочей поверхности матрицы были тщательно убраны все шероховатости и задиры, и она трижды покрывалась разбавленным в скипидаре воском и полировалась. После этого на поверхность распылителем (или валиком) был нанесен тонкий слой (до 0,5 мм) гелькоута (цветного лака) выбранного желтого цвета.

После его высыхания начался процесс выклейки оболочки по следующей технологии. Вначале с помощью валика восковая поверхность матрицы и сторона стекломата с более мелкими порами промазываются смолой, и затем мат укладывается на матрицу и прикатывается до полного удаления воздуха из-под слоя (при необходимости можно сделать и небольшую прорезь в мате).

Таким же образом укладываются и последующие слои стекломатов до требуемой толщины (4-5 мм), с установкой, где необходимо, закладных деталей (металлических и деревянных). Излишние лоскуты по краям обрезаются при выклейке «помокрому». Рекомендуется для изготовления бортов корпуса использовать 2-3 слоя стекломата, а днища-до 4 слоев.

При этом следует проклеить дополнительно еще все углы, а также места вворачивания крепежных деталей. После отвердения смолы оболочка легко снимается с матрицы и обрабатывается: обтачиваются края, вырезаются пазы, сверлятся отверстия. Для обеспечения непотопляемости «Аэроджипа» к внутренней оболочке приклеивают куски пенопласта (например, мебельного), оставляя свободными лишь каналы для прохода воздуха по всему периметру.

Куски пенопласта склеиваются между собой смолой, а к внутренней оболочке прикрепляются полосками стекломата, тоже смазанными смолой. После изготовления по отдельности наружной и внутренней оболочек они состыковываются, скрепляются струбцинами и саморезами, а затем соединяются (склеиваются) по периметру полосками промазанного полиэфирной смолой того же стекломата шириной 40-50 мм, из которого были изготовлены сами оболочки.

После этого корпус оставляют до полной полимеризации смолы. Через сутки к верхнему стыку оболочек по периметру прикрепляют вытяжными заклепками дюралюминиевую полосу сечением 30x2 мм, установив ее вертикально (на ней фиксируются язычки сегментов). К нижней части дна приклеивают деревянные полозья размерами 1500x90x20 мм (длина х ширина х высота) на расстоянии 160 мм от края.

Сверху на полозья наклеивается один слой стекломата. Точно так же, только изнутри оболочки, в кормовой части кокпита, устраивается основание из деревянной плиты под двигатель. Стоит отметить, что по такой же технологии, по которой изготавливались наружная и внутренняя оболочки, выклеивались и более мелкие элементы: внутренняя и наружная оболочки диффузора, рули поворота, бензобак, кожух двигателя, ветроотбойник, тоннель и сиденье водителя.

Тем же, кто только начинает работать со стеклопластиком, рекомендую подготавливать изготовление катера именно с этих мелких элементов. Полная масса стеклопластикового корпуса вместе с диффузором и рулями направления-около 80 кг.

Конечно, изготовление такого корпуса можно поручить и специалистам-фирмам, производящим стеклопластиковые лодки и катера. Благо и в России их немало, да и расходы будут соизмеримы. Однако в процессе самостоятельного изготовления удастся получить необходимые опыт и возможность в дальнейшем самому моделировать и создавать различные элементы и конструкции из стеклопластика. Винтомоторная установка.

Она включает в себя двигатель, воздушный винт и трансмиссию, передающую от первого ко второму крутящий момент. Двигатель использован BRIGGS & STATTION, выпускающийся в Японии по американской лицензии: 2-цилиндровый, V-образный, четырехтактный, мощностью 31 л.с. при 3600 оборотах в минуту. Его гарантированный моторесурс составляет 600 тыс. часов.

Запуск осуществляется электростартером, от аккумулятора, а работа свечей зажигания-от магнето. Двигатель установлен на днище корпуса «Аэроджипа», а ось ступицы пропеллера закреплена с обоих концов на кронштейнах по центру диффузора, приподнятого над корпусом. Передача крутящего момента с выходного вала двигателя на ступицу осуществляется зубчатым ремнем. Ведомый и ведущий шкивы, как и ремень,-зубчатые.

Хотя масса двигателя не столь уж велика (около 56 кг), но расположение его на днище значительно понижает центр тяжести катера, что положительно сказывается на устойчивости и маневренности машины, особенно такой - «воздухоплавающей».

Выхлоп отработавших газов выведен в нижний воздушный поток. Вместо установленного японского можно использовать и подходящие отечественные двигатели,-например, от снегоходов «Буран», «Рысь» и другие. Кстати, для одно- или двухместного АВП вполне подойдут двигатели мощностью поменьше-около 22 л. с.

Воздушный винт-шестилопастный, с фиксированным шагом (устанавливаемым на суше углом атаки) лопастей. К неотъемлемой части винтомоторной установки следует отнести и кольцевой канал воздушного винта, хотя его основание (нижний сектор) выполнено заодно с внутренней оболочкой корпуса.

Кольцевой канал, как и корпус-тоже составной, склеен из наружной и внутренней обечаек. Как раз в том месте, где нижний сектор его стыкуется с верхним, устроена стеклопластиковая разделительная панель: она разделяет воздушный поток, создаваемый пропеллером (а стенки нижнего сектора, наоборот, соединяет по хорде).

Двигатель, расположенный у транца в кокпите (за спинкой сиденья пассажиров), закрыт сверху стеклопластиковым капотом, а воздушный винт, кроме диффузора,-еще и проволочной решеткой спереди. Мягкое эластичное ограждение «Аэроджипа» (юбка) состоит из отдельных, но одинаковых сегментов, выкроенных и сшитых из плотной легкой ткани.

Желательно, чтобы ткань была водоотталкивающей, не твердела на морозе и не пропускала воздух. Я использовал материал Vinyplan финского производства, но вполне подойдет отечественная ткань типа перкаль. Выкройка сегмента несложная, и сшить его можно даже вручную. Крепится каждый сегмент к корпусу следующим образом.

Язычок накидывается на бортовую вертикальную планку, с нахлестом в 1,5 см; на него-язычок соседнего сегмента, и оба они в месте нахлеста закрепляются на планке специальным зажимом типа «крокодильчик», только без зубьев. И так по всему периметру «Аэроджипа». Для надежности можно еще поставить зажим и по середине язычка.

Два же нижних угла сегмента с помощью капроновых хомутиков подвешиваются свободно на тросе, обхватывающем нижнюю часть наружной оболочки корпуса. Такая составная конструкция юбки позволяет без проблем заменять вышедший из строя сегмент, на что потребуется 5-10 минут. К месту будет сказать, что конструкция оказывается работоспособной при выходе из строя до 7% сегментов. Всего же их размещается на юбке до 60 штук.

Принцип движения «Аэроджипа» следующий. После запуска двигателя и его работы на холостом ходу аппарат остается на месте. При увеличении числа оборотов воздушный винт начинает гнать более мощный поток воздуха. Часть его (большая) создает пропульсивную силу и обеспечивает катеру движение вперед.

Другая же часть потока уходит под разделительную панель в бортовые воздуховоды корпуса (свободное пространство между оболочками до самой носовой части), и далее через отверстия-пазы в наружной оболочке равномерно поступает в сегменты.

Этот поток одновременно с началом движения создает воздушную подушку под днищем, приподнимая аппарат над подстилающей поверхностью (будь то грунт, снег или вода) на несколько сантиметров. Поворот «Аэроджипа» осуществляется двумя рулями направления, отклоняющими «поступательный» поток воздуха в сторону.

Управление рулями осуществляется от двухплечего рычага рулевой колонки мотоциклетного типа, через боуденовский трос, идущий по правому борту между оболочками к одному из рулей. Другой руль соединен с первым жесткой тягой. На левой рукоятке двуплечего рычага закреплена и манетка управления дроссельной заслонкой карбюратора (аналог ручки газа).

Для эксплуатации катера на воздушной подушке его необходимо зарегистрировать в местной государственной инспекции по маломерным судам (ГИМС) и получить судовой билет. Для получения же удостоверения на право управления катером надо пройти еще и курс обучения по управлению маломерным судном. Однако и на этих курсах пока еще далеко не везде есть инструкторы по пилотированию аппаратов на воздушной подушке.

Поэтому каждому пилоту приходится осваивать управление АВП самостоятельно, буквально по крупицам набирая соответствующий опыт.

Катер на воздушной подушке "Аэроджип": 1 -сегмент (плотная ткань); 2-швартовная утка (3 шт.); 3-ветровой козырек; 4-бортовая планка крепления сегментов; 5-ручка (2 шт.); 6-ограждение воздушного винта; 7-кольцевой канал; 8-руль направления (2 шт.); 9-рычаг управления рулями; 10-лючок доступа к бензобаку и аккумулятору; 11-сиденье пилота; 12-пассажирский диван; 13-кожух двигателя; 14-двигатель; 15-наружная оболочка; 16-наполнитель (пенопласт); 17-внутренняя оболочка; 18-разделительная панель; 19-воздушный винт; 20-втулка воздушного винта; 21-приводной зубчатый ремень; 22-узел для крепления нижней части сегмента


Теоретический чертеж корпуса: 1 -внутренняя оболочка; 2-наружная оболочка


Схема трансмиссии винтомоторной установки: 1 -выходной вал двигателя; 2-ведущий зубчатый шкив; 3 -зубчатый ремень; 4-ведомый зубчатый шкив; 5 -гайка; 6-дистанционные втулки; 7-подшипник; 8-ось; 9-ступица; 10-подшипник; 11-дистанционная втулка; 12-опора; 13-воздушный винт


Рулевая колонка: 1-рукоятка; 2-двуплечий рычаг; 3-стойка; 4-сошка (см. фото)

Схема рулевого управления: 1-рулевая колонка; 2-трос Боудена, 3-узел крепления оплетки к корпусу (2 шт.); 4-подшипник (5 шт.); 5-рулевая панель (2 шт.); 6-двуплечий рычаг-кронштейн (2 шт.); 7-соединительная тяга рулевых панелей (см. фото)


Сегмент гибкого ограждения: 1 -стенки; 2-крышка с язычком

В России существуют целые сообщества людей, который собирают и разрабатывают любительские СВП. Это очень интересное, но, к сожалению, сложное и далеко не дешевое занятие.

Изготовление корпуса КВП

Известно, что суда на воздушной подушке испытывают гораздо меньшие нагрузки, чем обычные глиссирующие лодки и катера. Всю нагрузку на себя берет гибкое ограждение. Кинетическая энергия при движении не передается на корпус и это обстоятельство делает возможным монтаж любого корпуса, без сложных рассчетов прочности. Единственное ограничение для корпуса любительского КВП — вес. Это обязательно следует учитывать при выполнении теоретических чертежей.

Так же важным аспектом является степень сопротивления встречному воздушному потоку. Ведь аэродинамические характеристики напрямую влияют на расход топлива, который, даже у любительских СВП, сравним с расходом среднего внедорожника. Профессиональный аэродинамический проект стоит больших денег, поэтому конструкторы-любители делают все "на глаз", просто заимствуюя линии и формы у лидеров автопрома или авиации. Про авторские права в данном случае можно не думать.


Для изготовления корпуса будущего катера можно использовать рейки из ели. В качестве обшивки — фанеру толщиной 4 мм, которая крепится при помощи эпоксидного клея. Оклейка фанеры плотной тканью (например, стеклотканью) нецелесообразна в виду значительного увеличения веса конструкции. Это наиболее технологически не сложный способ.

Наиболее искушенные представители сообщества создают корпуса из стеклопластика по собственным компьютерным 3d-моделям или на глаз. Для начала создается прототип и материала типа пенопласта с которого снимается матрица. Далее корпуса делаются точно так же, как лодки и катера из стеклопластика.


Непотопляемости корпуса можно достигнуть множеством способов. Например при помощи установки в бортовые отсеки перегородок, непроницаемых для воды. А еще лучше - можно заполнить эти отсеки пенопластом. Можно установить под гибкое ограждение надувные баллоны, на подобии лодок ПВХ.

Силовая установка СВП

Основной вопрос - сколько, и он встречает конструктора на всем пути проектирования силовой системы. Сколько двигателей, сколько должна весить рама и двигатель, сколько вентиляторов, сколько лопастей, сколько оборотов, сколько градусов сделать угол атаки и в конце концов сколько это будет стоить. Именно данный этап является наиболее затратным, ведь в кустарных условиях невозможно соорудить двигатель внутреннего сгорания или лопасть вентилятора с нужным КПД и уровнем шума. Такие вещи приходится покупать, и стоят они не дешего.


Сложнейшим этапом сборки оказался монтаж гибкого ограждения катера, удерживающего воздушную подушку точно под корпусом. Известно, что из-за постоянного контакта с пересеченной местностью она склонна к быстрому износу. Поэтому для ее создания была использована брезентовая ткань. Сложная конфигурация стыков ограждения потребовала расхода такой ткани в количестве 14 метров. Его износостойкость можно увеличить за счет пропитки резиновым клеем с добавлением алюминиевой пудры. Такое покрытие имеет огромное практическое значение. В случае износа или разрывов гибкого ограждения его можно без труда восстановить. По аналогии с наращиванием автомобильного протектора. По словам автора проекта, перед тем как приступить к изготовлению ограждения, следует запастись максимальным терпением.

Установка готового ограждения, как и сборка самого корпуса, должны выполняться при условии нахождения будущего катера вверх килем. После раскантовки корпуса можно устанавливать силовую установку. Для этой операции понадобится шахта размерами 800 на 800. После того как система управления будет подведена к двигателю, наступает наиболее волнительный во всем процессе момент — испытание катера в реальных условиях.

Поделитесь с друзьями или сохраните для себя:

Загрузка...