Система комплемента, классический и альтернативный пути активации комплемента. Методы определения комплемента. Система комплемента. Пути активации Система комплемента микробиология

Московская Государственная Академия Ветеринарной

медицины и Биотехнологии им. К.И.Скрябина

Реферат по иммунологии на тему: «Система комплимента»

Работу выполнила

Котлярова А. Д.

6 группа 3 ФВМ

Работу проверил

Москва 2008 г.

Система комплемента - сложный комплекс белков, представленных глав­ным образом во фракции β-глобулинов, насчитывающий, включая регуляторные, около 20 компонентов, на долю которых приходится 10 % белков сыво­ротки крови. Комплемент впервые опи­сал Бухнер в 1889 г. под названием «алексин» - термолабильный фактор, вприсутствии которого наблюдается ли­зис микробов. Свое название (Эрлих, 1895) комплемент получил благодаря тому, что он комплементирует (допол­няет) и усиливает действие антител и фагоцитов, защищая организм человека и животных от большинства бактери­альных инфекций.

Комплемент представляет собой си­стему каскадно-действующих пептид-гидролаз, получивших обозначение от С1 до С9. Установлено, что большая часть компонентов комплемента син­тезируется гепатоцитами и другими клетками печени (около 90 %, СЗ, С6, С8, фактор В и др.), а также моноцита­ми/макрофагами (С1, С2, СЗ, С4, С5).

С1-компонент представлен в плазме крови тремя белками(Clq, Clr, С Is).

Наиболее сложной из них является мо­лекула Clq (рис. 1), состоящая из 18 по­липептидных цепей трех типов (по 6 цепей А-, В- и С-типов). Все 18 цепей своими коллагеноподобными N-конца-ми (78 остатков аминокислот) образуют канатообразную спирально закручен­ную структуру, от которой расходятся в разные стороны С-концевые участки цепей (103-108 аминокислотных ос­татков), завершающиеся глобулярными головками, которые могут взаимодей­ствовать с комплементсвязывающими участками Сн-доменов антител (в со­ставе иммунного комплекса АГ-AT).

В норме все компоненты компле­мента - неактивные или малоактивные соединения, но могут последовательно активироваться за счет отщепления или присоединения пептидных факторов (например, С2а, C2b, C4a, C4b и др.) и факторов активации (факторов В и D, липополисахаридов, гликолипидов, ан­тител и др.) - продукт одной реакции катализирует последующую. Катабо­лизм компонентов комплемента самый высокий по сравнению с другими бел­ками сыворотки крови, с обновлением втечение суток до 50 % белков системы комплемента.

Рис. 1 . Молекула Clq -компонента комплемента (электронная микроскопия)

Молекула состоит из шести терминальных субъединиц, соединенных центральной единицей (из Schaechter M., Medoff G., Eisenstein В. Mechanisms of microbial diseases, 2 nd ed, Williams & Wilkins, 1993)

Различные компоненты комплемен­та и их фрагменты, образующиеся в процессе активации, способны вызы­вать воспалительные процессы, лизис клеток, стимулировать фагоцитоз. Ко­нечным результатом активации может быть сборка комплекса из С5-, С6-, С7-, С8- и С9-компонентов, атакующего мембрану с образованием в ней каналов и повышением проницаемости мембраны для воды и ионов, что обусловливает гибель клетки.

Активация комплемента может про­исходить двумя основными путями: альтернативным - без участия антител и классическим - с участием антител (рис. 2).


Рис . 2. Активация системы комплемента (из Schaechter M., MedoffG., Eisenstein В. Mechanisms of microbial diseases, 2 nd ed, Williams & Wilkins, 1993)

Альтернативный путь бо­лее древний. В его основе лежит спо­собность некоторых микроорганизмов активировать СЗ-конвертазу (СЗЬВЬ) путем связывания ее на углеводных уча­стках своей поверхностной мембраны с последующей стабилизацией СЗ-кон-вертазы белком пропердином (Р). Про-пердин способен связываться с поверх­ностью бактериальной клетки и ини­циировать при этом фиксацию на ней СЗ-конвертазы и присоединение к ком­плементу дополнительных молекул СЗЬ. СЗЬ способен закрепляться как на поверхности микроорганизма, так и на рецепторах фагоцитов (нейтрофилов и макрофагов), выполняя роль опсонина, усиливающего фагоцитоз различных бактерий. Образовавшийся комплекс СЗЬВЬР обладает функцией СЗ-конвер­тазы. Формирование СЗ/С5-конвертаз при альтернативном пути активации комплемента происходит при участии факторов В, D, Р в присутствии ионов Mg 2+ и регулируется некоторыми фак­торами (Н, I и др.) инактивации.

Стабилизированная на мембране ак­тивная конвертаза расщепляет СЗ - один из компонентов системы компле­мента, содержащийся в крови в наи­большей концентрации, что ведет к цепной реакции активации других ком­понентов комплемента.

В результате действия СЗ/С5-кон-вертаз вначале при участии СЗ-конвер­тазы происходит расщепление СЗ-компонента, содержащегося в крови в наи­большей концентрации, что ведет к цепной реакции активации других ком­понентов комплемента, а последующее сформирование С5-конвертазы ведет к расщеплению С5-компонента на более крупный (С5Ь) и мелкий (С5а) фраг­менты. С5Ь связывается с комплексом компонентов комплемента на клеточ­ной мембране, а С5а остается в жидкой фазе, обладая хемотаксической и анафилактогенной активностью.

С5Ь-фрагмент обладает способнос­тью связывать компонент С6 с образо­ванием комплекса С5Ь - С6, к которо­му быстро присоединяется С7, а затем С8. Комплекс С5Ь - С6, 7, 8 проника­ет внутрь липидного бислоя мембраны. На завершающем этапе к С8 присоеди­няются 12-20 молекул С9, что завер­шает формирование высокоактивного литического комплекса (А. А. Ярилин, 1999), формирующего трансмембранный канал, через который внутрь клет­ки поступают ионы водорода, натрия и вода, что ведет к набуханию и лизису клетки. С9-белок, гомологичный перфорину, способный к полимеризации при контакте с фосфолипидами мемб­раны, ответствен за формирование трансмембранного канала цилиндри­ческой формы, наружная поверхность которого образована гидрофобными, а внутренняя (обращенная в полость ка­нала) - гидрофильными участками.

Классический путь актива­ции комплемента возник для усиления фагоцитоза в отношении микроорга­низмов, которые не запускают альтер­нативный путь, т. е. не имеют на мемб­ране полисахаридного участка связыва­ния СЗ-конвертазы. Главная особен­ность этого пути - взаимодействие антигена и антитела с образованием иммунного комплекса (АГ-AT), акти­вирующего компоненты комплемента (С1, С2, С4), которые, в свою очередь, формируют СЗ-конвертазу (С4Ь2а), расщепляющую СЗ-компонент.

В Сн4-доменах IgM и Сн2-доменах IgG имеются участки, обладающие сродством к Clq (только в составе им­мунных комплексов). Clq связывается не менее чем с двумя Сн4-доменами од­ной и той же молекулы IgM и с Сн2-до-менами одновременно двух молекул IgG, в связи с чем комплементактиви-рующая активность IgG ниже, чем у IgM. С комплементсвязывающими уча­стками антител (IgM, IgGl, IgG3 и IgG2) взаимодействуют концевые (гло­булярные) участки Clq, что ведет к ак­тивации молекулы Clq, приобретаю­щей свойства сериновой пептидгидро-лазы. Clq-пептидгидролаза активирует Clr, который участвует в активации Cls. В результате образующиеся при ак­тивации и расщеплении Clr- и Cls-фрагменты встраиваются в Clq, распо­лагаясь между его глобулярными участ­ками (головками). При этом формиру­ется комплекс Clqrs, обладающий активностью трипсиновой пептидгидролазы, катализирующей расщепление С4 (на С4а- и С4Ь-фрагменты) и С2 (на С2а- и С2Ь-фрагменты). Следствием взаимодействия Clqrs, C4b и С2а в присутствии ионов Са 2+ является обра­зование комплекса С4Ь2а, обладающего свойствами и активностью СЗ-конвертазы, расщепляющей СЗ, и участву­ющего в формировании С5-конверта-зы (С4Ь2аЗЬ). Дальнейшая активация комплемента по классическому пути полностью совпадает с альтернатив­ным путем и завершается формирова­нием мембраноатакующего комплекса С5Ь - 6789 и лизисом клеток.

Рис. 3. Аналогичные этапы активации комплемента по классическому, лектиновому и альтернативному механизмам:

Как классический так и альтернативный путь активации комплемента приводит к появлению СЗ-конвертазы: С4Ь2а и C3bBb соответственно. Классический путь начинается с активации комплексом антиген-антитело и последующего расщепления активированным CIs компонентов С4 и С2. Фрагменты меньшего размера C4a и C2b, высвобождаются, а более крупные образуют С4Ь2а. Компоненты С4 и С2 могут быть активированы также МАСП (маннан-связывающей лектин-ассоциированной сериновой протеиназой) - белком лектинового пути, аналогичным CIs, и МСЛ (сывороточным маннан-связывающим лектином). На первых этапах альтернативного пути возникший в результате «холо­стой» активации и связавшийся с поверхностью белок СЗЬ соединяется с фактором В, от которого Фактор D отщепляет меньший фрагмент- Ва. Больший фрагмент, то есть ВЬ, остается связанным с СЗЬ, образуя СЗЬDЬ-СЗ-конвертазу которая расщепляет дополнительное количество молекул СЗ (механизм положительной обратной связи). Поверхность активирующая комплемент (например, микроорганизмов), стабилизирует СЗЬ, обеспечивая его связы­вание с Фактором В Это способствует дальнейшей альтернативной активации комплемента. СЗ-конвертазы класси­ческого и альтернативного путей могут дополнительно присоединять СЗЬ, образуя ферментные комплексы, называе­мые С5-конвертазами (С4Ь2аЗЬ и СЗЬВЬЗЬ соответственно), которые активируют следующий компонент систем комплемента - С5 (А. Ройт и соавт., 2000)

Таким образом, принципиальных биохимических различий между классическим и альтернативным путями ак­тивации комплемента, по существу, нет, тем более что факторы В и С2, уча­ствующие в активации СЗ по альтерна­тивному и классическому путям, сход­ны между собой (по размеру, строению, фрагментам расщепления, механизму действия). Есть мнение, что, возможно, факторы В и С2 возникли в результате дубликации одного гена (В. В. Чиркин и др., 1999). Однако по клиническим проявлениям различия между этими путями весьма существенны. При аль­тернативном пути в циркуляторном русле значительно увеличивается со­держание осколков белковых молекул с высокой биологической активностью, для нейтрализации которых включают­ся сложные механизмы, что повышает возможность развития вялотекущего, зачастую генерализованного воспали­тельного процесса. Классический путь наиболее безвреден для организма. При нем на микроорганизмы одновременно воздействуют и фагоциты, и антитела, которые специфически связывают ан­тигенные детерминанты микроорганиз­мов и активизируют систему компле­мента, способствуя тем самым актива­ции фагоцитоза. При этом уничтоже­ние атакуемой клетки происходит одновременно при участии и антител, и комплемента, и фагоцитов, что внешне может никак не проявляться. В связи с этим классический путь активации комплемента считается более физиоло­гическим путем обезвреживания и ути­лизации антигенов, чем альтернатив­ный.

Помимо двух основных путей воз­можны и другие механизмы активации комплемента. В частности, существует вариант классической активации комп­лемента - лектиновый путь активации (рис. 3), который мож­но трактовать и как самостоятельный (А. А. Ярилин и др., 1999; А. Ройт и соавт., 2000). Как известно, лектинами называют белки, способные специфи­чески соединяться с определенными группами углеводов. Запуск лектиново-го пути активации комплемента связан с одним из лектинов - маннозосвязывающим белком (МСБ, содержится в сыворотке крови в концентрации 0,1 - 5,0мкг/мл). МСБ имеет очень сходную с Clq структуру хотя негомологичен ему; является Са - зависимым, облада­ет сродством к маннозе, которая в сво­бодной форме присутствует на микроб­ных клетках, но не на клетках макроор­ганизма. Связавшись с маннозосодержащей клеткой, МСБ приобретает способность, подобно Clqrs, активиро­вать С4 и С2.

Дальше лектиновый и классический пути активации совпадают (А. А. Яри лин, 1999). Возможно, что лектиновый путь активации комплемента в филоге­незе появился позднее альтернативно­го, но раньше классического. В отличие от альтернативного лектиновый путь, как и классический, включает актива­цию С4 и С2, но без участия антител, а с участием лишь одного МСБ. Не ис­ключено, что появление в процессе эволюции Clq, подобного маннозосвязывающему белку, но способного при­обретать активность пептидгидролазы, инициирующей каскад реакций актива­ции комплемента лишь после взаимо­действия с антигенами, привело к воз­никновению более эффективного классического пути активации комп­лемента, что значительно расширило возможности для активации компле­мента у позвоночных.

Классический путь активации комп­лемента может также запускаться С -реактивным белком, комплексом гепари­на и протамина, некоторым гликолипидами, пептидгидролазами при неко­торых формах острой воспалительной реакции (пепсином, трипсином, калликреином, лизосомальными и бакте­риальными ферментами) на какой-либо стадии от С1 до С5.

Список литературы:

    Воронин Е.С., Петров А.М., Серых М.М., Девришов Д.А. – Иммунология /Под ред. Е.С. Воронина. – М.: Колос-Пресс, 2002. – 408с.

    Кульберг А.Я. /Учебное пособие – Молекулярная иммунология – М.: Высш. Шк., 1985. – 287с.

    Может осуществляться по классическому и альтернативному пути.

    В случае классического пути образуются специфические (IgG или IgM) и иммунные комплексы. Процесс активации начинается с ранних компонентов комплемента: С1, далее в процесс вовлекаются компоненты С4, С2 и СЗ.

    Образование осуществляется при агрегации молекул иммуноглобулина или при связывании иммуноглобулинов с антигеном.

    Наиболее важным условием в процессе активации является конфигурация иммуноглобулина. Непосредственно в активацию системы комплемента вовлечен домен СН2 Fc-фрагмента молекулы иммуноглобулина. При этом в молекуле IgM Н - цепи расположены на оптимальном расстоянии друг от друга за счет собственной конфигурации молекулы, а в реакциях активации с иммуноглобулином G такое взаиморасположение возникает с частотой примерно 1 к 800, в результате чего способность иммуноглобулина G к связыванию белков комплемента существенно ниже.

    На молекулярном уровне стадии активации системы комплемента выглядят следующим образом:
    1. В присутствии ионов Са из белка С1 образуется тетрамер C1r2-Са2+-С1s2, который связывается с одной молекулой C1q. Данный комплекс обладает протеазной активностью, а его субстратами являются С2 и С4. В плазме присутствует ингибитор данного фермента (C1—Inh).
    2. В процесс вовлекается С4, распадающийся на два фрагмента — С4а и С4Ь, который приобретает свойства эстеразы, способной активировать С2. С4Ь в присутствии ионов магния расщепляет С2 на С2а и С2Ь. При этом С2а присоединяется к С4Ь, и образуется одно из ключевых веществ процесса активации комплемента — конвертаза 3-го компонента комплемента.
    3. Образовавшаяся СЗ-конвертаза (С4Ь2а) расщепляет СЗ на СЗа. При этом СЗЬ - это ключевой фрагмент как для классического, так и для альтернативного пути активации, в этом месте оба пути активации сходятся и далее процесс происходит одинаково в обоих случаях. Регулятором активации СЗ комплемента является фактор I (СЗЬ-инактиватор). Он расщеплет СЗЬ на неактивные фрагменты — СЗс и C3d и препятствует чрезмерной активации СЗ.
    4. Активная СЗЬ — фрагмент связывается с комплексом С4Ь и 2а, и образуется конвертаза 5-го компонента комплемента. С этого момента начинается образование финальной структуры — мембраноатакующаго комплекса (МАК), обозначаемого С5Ь6789. Он инициирует появление в липидном белке мембраны клетки пор, в результате образования которых возможен лизис клетки.

    В первых реакциях альтернативного пути активации активное участие принимает пропердиновая система. Она состоит из белков, называемых факторами D и В. Фактор D находится в сыворотке крови в виде активного фермента, субстратом для которого является фактор В.

    Данный белок расщепляется под влиянием фактора D, в результате чего образуется активный фрагмент - фактор ВЬ, в комплексе с СЗЬ образующий конвертазу 3-го компонента комплемента альтернативного пути активации. Она несколько отличается от конвертазы классического пути.

    СЗЬВЬ, стабилизированный белком пропердином, активирует СЗ с образованием С5-конвертазы и далее иначинается сборка мембраноатакующего комплекса (МАК).

    Система комплемента

    Мембраноатакующий комплекс, вызывающий лизис клетки.

    Система комплемента - комплекс сложных белков, постоянно присутствующих в крови. Это каскадная система протеолитических ферментов , предназначенная для гуморальной защиты организма от действия чужеродных агентов, она участвует в реализации иммунного ответа организма. Является важным компонентом как врождённого, так и приобретённого иммунитета.

    История понятия

    В конце XIX столетия было установлено, что сыворотка крови содержит некий «фактор», обладающий бактерицидными свойствами. В 1896 году молодой бельгийский ученый Жюль Борде , работавший в Институте Пастера в Париже, показал, что в сыворотке имеются два разных вещества, совместное действие которых приводит к лизису бактерий: термостабильный фактор и термолабильный (теряющий свои свойства при нагревании сыворотки) фактор. Термостабильный фактор, как оказалось, мог действовать только против определенных микроорганизмов, в то время как термолабильный фактор имел неспецифическую антибактериальную активность. Термолабильный фактор позднее был назван комплементом . Термин «комплемент» ввел Пауль Эрлих в конце 1890-х годов. Эрлих был автором гуморальной теории иммунитета и ввел в иммунологию много терминов, которые впоследствии стали общепринятыми. Согласно его теории, клетки, ответственные за иммунные реакции, имеют на поверхности рецепторы , которые служат для распознавания антигенов . Эти рецепторы мы сейчас называем «антителами » (основой вариабельного рецептора лимфоцитов является прикреплённое к мембране антитело класса IgD, реже IgM. Антитела других классов в отсутствие соответствующего антигена не прикреплены к клеткам). Рецепторы связываются с определенным антигеном, а также с термолабильным антибактериальным компонентом сыворотки крови. Эрлих назвал термолабильный фактор «комплементом» потому, что этот компонент крови «служит дополнением» к клеткам иммунной системы.

    Эрлих полагал, что имеется множество комплементов, каждый из которых связывается со своим рецептором, подобно тому, как рецептор связывается со специфическим антигеном. В противоположность этому Борде утверждал, что существует «дополнение» только одного типа. В начале XX века спор был разрешен в пользу Борде; выяснилось, что комплемент может активироваться с участием специфических антител или самостоятельно, неспецифическим способом.

    Общее представление

    Компоненты системы комплемента

    Комплемент - система белков, включающая около 20 взаимодействующих компонентов: С1 (комплекс из трех белков), С2, СЗ, …, С9, фактор В, фактор D и ряд регуляторных белков. Все эти компоненты - растворимые белки с мол. массой от 24 000 до 400 000, циркулирующие в крови и тканевой жидкости. Белки комплемента синтезируются в основном в печени и составляют приблизительно 5 % от всей глобулиновой фракции плазмы крови. Большинство из них неактивны до тех пор, пока не будут приведены в действие или в результате иммунного ответа (с участием антител), или непосредственно внедрившимся микроорганизмом (см. ниже). Один из возможных результатов активации комплемента - последовательное объединение так называемых поздних компонентов (С5, С6, С7, С8 и С9) в большой белковый комплекс, вызывающий лизис клеток (литический, или мембраноатакующий, комплекс). Агрегация поздних компонентов происходит в результате ряда последовательных реакций протеолитической активации с участием ранних компонентов (С1, С2, С3, С4, фактора В и фактора D). Большинство этих ранних компонентов - проферменты, последовательно активируемые путем протеолиза . Когда какой-либо из этих проферментов специфическим образом расщепляется, он становится активным протеолитическим ферментом и расщепляет следующий профермент, и т. д. Поскольку многие из активированных компонентов прочно связываются с мембранами, большинство этих событий происходит на поверхностях клеток. Центральный компонент этого протеолитического каскада - С3. Его активация путем расщепления представляет собой главную реакцию всей цепи активации комплемента. С3 может быть активирован двумя основными путями - классическим и альтернативным. В обоих случаях С3 расщепляется ферментным комплексом, называемым С3-конвертазой. Два разных пути приводят к образованию разных С3-конвертаз, однако обе они образуются в результате спонтанного объединения двух компонентов комплемента, активированных ранее в цепи протеолитического каскада. С3-конвертаза расщепляет С3 на два фрагмента, больший из которых (С3b) связывается с мембраной клетки-мишени рядом с С3-конвертазой; в результате образуется ферментный комплекс еще больших размеров с измененной специфичностью - С5-конвертаза. Затем С5-конвертаза расщепляет С5 и тем самым инициирует спонтанную сборку литического комплекса из поздних компонентов - от С5 до С9. Поскольку каждый активированный фермент расщепляет много молекул следующего профермента, каскад активации ранних компонентов действует как усилитель: каждая молекула, активированная в начале всей цепи, приводит к образованию множества литических комплексов.

    Основные этапы активации системы комплемента.

    Классический и альтернативный пути активации системы комплемента.

    Система комплемента работает как биохимический каскад реакций. Комплемент активируется тремя биохимическими путями: классическим, альтернативным и лектиновым путем. Все три пути активации производят разные варианты C3-конвертазы (белка, расщепляющего С3). Классический путь (он был открыт первым, но эволюционно является новым) требует антител для активации (специфический иммунный ответ, приобретённый иммунитет), в то время как альтернативный и лектиновый пути могут быть активизированы антигенами без присутствия антител (неспецифический иммунный ответ, врождённый иммунитет). Итог активации комплемента во всех трёх случаях одинаков: C3-конвертаза гидролизует СЗ, создавая C3a и C3b и вызывая каскад дальнейшего гидролиза элементов системы комплемента и событий активации. В классическом пути для активации С3-конвертазы необходимо образование комплекса С4bC2a. Этот комплекс образуется при расщеплении С2 и С4 С1-комплексом. С1-комплекс, в свою очередь, для активации должен связаться с иммуноглобулинами класса М или G. C3b связывается с поверхностью болезнетворных микроорганизмов, что приводит к большей «заинтересованности» фагоцитов к связанным с СЗb клеткам (опсонизация). C5a - важный хемоаттрактант, помогающий привлекать в район активации системы комплемента новые иммунные клетки. И C3a, и C5a имеют анафилотоксическую активность, непосредственно вызывая дегрануляцию тучных клеток (как следствие - выделение медиаторов воспаления). C5b начинает формирование мембраноатакующих комплексов (МАК), состоящим из C5b, C6, C7, C8 и полимерного C9. МАК - цитолитический конечный продукт активации системы комплемента. МАК формирует трансмембранный канал, вызывающий осмотический лизис клетки-мишени. Макрофаги поглощают помеченные системой комплемента болезнетворные микроорганизмы.

    Биологические функции

    Сейчас выделяют следующие функции:

    1. Опсонизирующая функция. Сразу вслед за активацией системы комплемента образуются опсонизирующие компоненты, которые покрывают патогенные организмы или иммунные комплексы, привлекая фагоцитов. Наличие на поверхности фагоцитирующих клеток рецептора к С3b усиливает их прикрепление к опсонизированным бактериям и активирует процесс поглощения. Такое более тесное прикрепление С3b-связанных клеток или иммунных комплексов к фагоцитирующим клеткам получило название феномена иммунного прикрепления .
    2. Солюбилизация (т.е. растворение) иммунных комплексов (молекулой C3b). При недостаточности комплемента развивается иммунокомплексная патология (СКВ-подобные состояния). [СКВ = системная красная волчанка]
    3. Участие в воспалительных реакциях. Активация системы комплемента приводит к выделению из тканевых базофилов (тучных клеток) и базофильных гранулоцитов крови биологически активных веществ (гистамина, серотонина, брадикинина), которые стимулируют воспалительную реакцию (медиаторов воспаления). Биологически активные компоненты, которые образуются при расщеплении С3 и С5 , приводят к высвобождению вазоактивных аминов, таких как гистамин , из тканевых базофилов (тучных клеток) и базофильных гранулоцитов крови. В свою очередь это сопровождается расслаблением гладкой мускулатуры и сокращением клеток эндотелия капилляров, усилением сосудистой проницаемости. Фрагмент С5а и другие продукты активации комплемента содействуют хемотаксису , агрегации и дегрануляции нейтрофилов и образованию свободных радикалов кислорода. Введение С5а животным приводило к артериальной гипотонии, сужению легочных сосудов и повышению проницаемости сосудов из-за повреждения эндотелия.
      Фукнции С3а:
      • выступать в роли хемотаксического фактора, вызывая миграцию нейтрофилов по направлению к месту его высвобождения;
      • индуцировать прикрепление нейтрофилов к эндотелию сосудов и друг к другу;
      • активировать нейтрофилы, вызывая в них развитие респираторного взрыва и дегрануляцию;
      • стимулировать продукцию нейтрофилами лейкотриенов.
    4. Цитотоксическая, или литическая функция. В конечной стадии активации системы комплемента образуется мембраноатакующий комплекс (МАК) из поздних компонентов комплемента, который атакует мембрану бактериальной или любой другой клетки и разрушает ее.
    Фактор С3е, образующийся при расщеплении фактора С3b, обладает способностью вызывать миграцию нейтрофилов из костного мозга, и в таком случае быть причиной лейкоцитоза .

    Активация системы комплемента

    Классический путь

    Классический путь запускается активацией комплекса С1 (он включает одну молекулу С1q и по одной молекуле С1r и С1s). Комплекс С1 связывается с помощью С1q с иммуноглобулинами классов М и G, связанными с антигенами. Гексамерный C1q по форме напоминает букет нераскрытых тюльпанов, «бутоны» которого могут связываться с участком антител. Для инициации этого пути достаточно единственной молекулы IgM , активация молекулами IgG менее эффективна и требует больше молекул IgG.

    С1q связывается прямо с поверхностью патогена, это ведет к конформационным изменениям молекулы С1q, и вызывает активацию двух молекул сериновых протеаз С1r. Они расщепляют С1s (тоже сериновую протеазу). Потом комплекс С1 связывается с С4 и С2 и затем расщепляет их, образуя С2а и С4b. С4b и С2а связываются друг с другом на поверхности патогена, и образуют С3-конвертазу классического пути, С4b2а. Появление С3-конвертазы приводит к расщеплению С3 на С3а и С3b. С3b образует вместе с С2а и С4b С5-конвертазу классического пути. С5 расщепляется на C5a и C5b.C5b остается на мембране и соединяется с комплексом C4b2a3b.Потом соединяются С6, С7, С8 и С9,которая полимеризуется и возникает трубочка внутри мембраны. Тем самым нарушается осмотический баланс и в результате тургора бактерия лопается. Классический путь действует более точно, поскольку так уничтожается любая чужеродная клетка.

    Альтернативный путь

    Альтернативный путь запускается гидролизом C3 прямо на поверхности патогена. В альтернативном пути участвуют факторы В и D. С их помощью происходит образование фермента СЗbВb. Стабилизирует его и обеспечивает его длительное функционирование белок P. Далее РС3bВb активирует С3, в результате образуется С5-конвертаза и запускается образование мембраноатакующего комплекса. Дальнейшая активация терминальных компонентов комплемента происходит так же, как и по классическому пути активации комплемента. В жидкости в комплексе CЗbВb В заменяется Н фактором и под воздействием дезактивирующего соединения(Н) превращается в С3bi.Когда микробы попадают в организм комплекс СЗbВb начинает накапливаться на мембране. Он соединяется с С5, который расщепляется на C5a и C5b. C5b остается на мембране. Потом соединяются С6, С7, С8 и С9.После соединения С9 с С8, происходит полимеризация С9 (до 18 молекул сшиваются друг с другом) и образуется трубочка, которая пронизывает мембрану бактерии, начинается закачка воды и бактерия лопается.

    Альтернативный путь отличается от классического следующим: при активации системы комплемента не нужно образование иммунных комплексов, он происходит без участия первых компонентов комплемента - С1, С2, С4. Он также отличается тем, что срабатывает сразу же после появления антигенов - его активаторами могут быть бактериальные полисахариды и липополисахариды(являются митогенами), вирусные частицы, опухолевые клетки.

    Лектиновый (маннозный) путь активации системы комплемента

    Лектиновый путь гомологичен классическому пути активации системы комплемента. Он использует лектин, связывающий маннозу, (MBL) - белок, подобный C1q классического пути активации, который связывается с маннозными остатками и другими сахарами на мембране, что позволяет распознавать разнообразные болезнетворные микроорганизмы. MBL - сывороточный белок, принадлежащий к группе белков коллектинов, который синтезируется преимущественно в печени и может активировать каскад комплемента, непосредственно связываясь с поверхностью патогена.

    В сыворотке крови MBL формирует комплекс с MASP-I и MASP-II (Mannan-binding lectin Associated Serine Protease, связывающие MBL сериновые протеазы). MASP-I и MASP-II весьма схожи с C1r и C1s классического пути активации и, возможно, имеют общего эволюционного предшественника. Когда несколько активных центров MBL связываются с определенным образом ориентированными маннозными остатками на фосфолипидном бислое болезнетворного микроорганизма, MASP-I и MASP-II активируются и расщепляют белок C4 на C4a и C4b, а белок С2 на C2a и C2b. Затем C4b и C2a объединяются на поверхности болезнетворного микроорганизма, формируя C3-конвертазу, а C4a и C2b действуют как хемоаттрактанты для клеток иммунной системы.

    Регуляция системы комплемента

    Система комплемента может быть очень опасной для тканей хозяина, поэтому ее активация должна хорошо регулироваться. Большинство компонентов активны только в составе комплекса, при этом их активные формы способны существовать очень короткое время. Если в течение этого времени они не встретятся со следующим компонентом комплекса, то активные формы теряют связь с комплексом и становятся неактивными. Если концентрация какого-то из компонентов ниже пороговой (критической), то работа системы комплемента не приведет к физиологическим последствиям. Система комплемента регулируется специальными белками, которые находятся в плазме крови даже в большей концентрации, чем сами белки системы комплемента. Эти же белки представлены на мембранах собственных клеток организма, предохраняя их от атаки со стороны белков системы комплемента.

    Регуляторные механизмы в основном действуют в трех точках.

    1. С1. Ингибитор С1 контролирует классический и лектиновый пути активации. Действует двумя путями: ограничивает действие С4 и С2 с помощью связывания C1r- и С1s-протеаз и подобным образом выключает лектиновый путь, удаляя ферменты MASP из MBP-комплекса.
    2. С3-конвертаза. Время жизни С3-конвертазы уменьшают факторы ускорения распада. Некоторые из них находятся на поверхности собственных клеток (например, DAF и CR1). Они действуют на С3-конвертазы и классического, и альтернативного путей активации. DAF ускоряет распад С3-конвертазы альтернативного пути. СR1 (C3b/C4b receptor) расположен главным образом на поверхности эритроцитов и отвечает за удаление из плазмы крови опсонизированных иммунных комплексов. Другие регуляторные белки производятся печенью и в неактивном состоянии растворены в плазме крови. Фактор I - сериновая протеаза, расщепляющая C3b и C4b. С4-связывающий белок (C4BP) расщепляет С4 и помогает фактору I расщеплять C4b.Фактор H связывается с гликозаминогликанами, которые есть на собственных клетках, но не на клетках патогенов. Этот белок является кофактором фактора I, а также ингибирует активность C3bBb.
    3. С9. CD59 и Гомологичный Фактор Ограничения ингибируют полимеризацию С9 во время образования мембраноатакующего комплекса, не давая ему сформироваться.

    Роль системы комплемента при болезнях

    Система комплемента играет большую роль во многих болезнях, связанных с иммунитетом.

    Система комплемента - комплекс сложных белков, постоянно присутствующих в крови. Это каскадная система протеолитических ферментов , предназначенная для гуморальной защиты организма от действия чужеродных агентов, она участвует в реализации иммунного ответа организма. Является важным компонентом как врождённого, так и приобретённого иммунитета.

    История понятия

    В конце XIX столетия было установлено, что сыворотка крови содержит некий «фактор», обладающий бактерицидными свойствами. В 1896 году молодой бельгийский ученый Жюль Борде , работавший в Институте Пастера в Париже, показал, что в сыворотке имеются два разных вещества, совместное действие которых приводит к лизису бактерий: термостабильный фактор и термолабильный (теряющий свои свойства при нагревании сыворотки) фактор. Термостабильный фактор, как оказалось, мог действовать только против некоторых микроорганизмов, в то время как термолабильный фактор имел неспецифическую антибактериальную активность. Термолабильный фактор позднее был назван комплементом . Термин «комплемент» ввёл Пауль Эрлих в конце 1890-х годов. Эрлих был автором гуморальной теории иммунитета и ввёл в иммунологию много терминов, которые впоследствии стали общепринятыми. Согласно его теории, клетки, ответственные за иммунные реакции, имеют на поверхности рецепторы , которые служат для распознавания антигенов . Эти рецепторы мы сейчас называем «антителами » (основой вариабельного рецептора лимфоцитов является прикреплённое к мембране антитело класса IgD, реже IgM. Антитела других классов в отсутствие соответствующего антигена не прикреплены к клеткам). Рецепторы связываются с определённым антигеном, а также с термолабильным антибактериальным компонентом сыворотки крови. Эрлих назвал термолабильный фактор «комплементом» потому, что этот компонент крови «служит дополнением» к клеткам иммунной системы.

    Эрлих полагал, что имеется множество комплементов, каждый из которых связывается со своим рецептором, подобно тому, как рецептор связывается со специфическим антигеном. В противоположность этому Борде утверждал, что существует «дополнение» только одного типа. В начале XX века спор был разрешён в пользу Борде; выяснилось, что комплемент может активироваться с участием специфических антител или самостоятельно, неспецифическим способом.

    Общее представление

    Компоненты системы комплемента

    Комплемент - система белков, включающая около 20 взаимодействующих компонентов: С1 (комплекс из трех белков), С2, СЗ, …, С9, фактор В, фактор D и ряд регуляторных белков. Все эти компоненты - растворимые белки с мол. массой от 24 000 до 400 000, циркулирующие в крови и тканевой жидкости. Белки комплемента синтезируются в основном в печени и составляют приблизительно 5 % от всей глобулиновой фракции плазмы крови. Большинство из них неактивны до тех пор, пока не будут приведены в действие или в результате иммунного ответа (с участием антител), или непосредственно внедрившимся микроорганизмом (см. ниже). Один из возможных результатов активации комплемента - последовательное объединение так называемых поздних компонентов (С5, С6, С7, С8 и С9) в большой белковый комплекс, вызывающий лизис клеток (литический, или мембраноатакующий, комплекс). Агрегация поздних компонентов происходит в результате ряда последовательных реакций протеолитической активации с участием ранних компонентов (С1, С2, С3, С4, фактора В и фактора D). Большинство этих ранних компонентов - проферменты, последовательно активируемые путём протеолиза . Когда какой-либо из этих проферментов специфическим образом расщепляется, он становится активным протеолитическим ферментом и расщепляет следующий профермент, и т. д. Поскольку многие из активированных компонентов прочно связываются с мембранами, большинство этих событий происходит на поверхностях клеток. Центральный компонент этого протеолитического каскада - С3. Его активация путём расщепления представляет собой главную реакцию всей цепи активации комплемента. С3 может быть активирован двумя основными путями - классическим и альтернативным. В обоих случаях С3 расщепляется ферментным комплексом, называемым С3-конвертазой. Два разных пути приводят к образованию разных С3-конвертаз, однако обе они образуются в результате спонтанного объединения двух компонентов комплемента, активированных ранее в цепи протеолитического каскада. С3-конвертаза расщепляет С3 на два фрагмента, больший из которых (С3b) связывается с мембраной клетки-мишени рядом с С3-конвертазой; в результате образуется ферментный комплекс ещё больших размеров с измененной специфичностью - С5-конвертаза. Затем С5-конвертаза расщепляет С5 и тем самым инициирует спонтанную сборку литического комплекса из поздних компонентов - от С5 до С9. Поскольку каждый активированный фермент расщепляет много молекул следующего профермента, каскад активации ранних компонентов действует как усилитель: каждая молекула, активированная в начале всей цепи, приводит к образованию множества литических комплексов.

    Основные этапы активации системы комплемента.

    Система комплемента работает как биохимический каскад реакций. Комплемент активируется тремя биохимическими путями: классическим, альтернативным и лектиновым путём. Все три пути активации производят разные варианты C3-конвертазы (белка, расщепляющего С3). Классический путь (он был открыт первым, но эволюционно является новым) требует антител для активации (специфический иммунный ответ, приобретённый иммунитет), в то время как альтернативный и лектиновый пути могут быть активизированы антигенами без присутствия антител (неспецифический иммунный ответ, врождённый иммунитет). Итог активации комплемента во всех трёх случаях одинаков: C3-конвертаза гидролизует СЗ, создавая C3a и C3b и вызывая каскад дальнейшего гидролиза элементов системы комплемента и событий активации. В классическом пути для активации С3-конвертазы необходимо образование комплекса С4bC2a. Этот комплекс образуется при расщеплении С2 и С4 С1-комплексом. С1-комплекс, в свою очередь, для активации должен связаться с иммуноглобулинами класса М или G. C3b связывается с поверхностью болезнетворных микроорганизмов, что приводит к большей «заинтересованности» фагоцитов к связанным с СЗb клеткам (опсонизация). C5a - важный хемоаттрактант, помогающий привлекать в район активации системы комплемента новые иммунные клетки. И C3a, и C5a имеют анафилотоксическую активность, непосредственно вызывая дегрануляцию тучных клеток (как следствие - выделение медиаторов воспаления). C5b начинает формирование мембраноатакующих комплексов (МАК), состоящим из C5b, C6, C7, C8 и полимерного C9. МАК - цитолитический конечный продукт активации системы комплемента. МАК формирует трансмембранный канал, вызывающий осмотический лизис клетки-мишени. Макрофаги поглощают помеченные системой комплемента болезнетворные микроорганизмы.

    Биологические функции

    Сейчас выделяют следующие функции:

    1. Опсонизирующая функция. Сразу вслед за активацией системы комплемента образуются опсонизирующие компоненты, которые покрывают патогенные организмы или иммунные комплексы, привлекая фагоциты. Наличие на поверхности фагоцитирующих клеток рецептора к С3b усиливает их прикрепление к опсонизированным бактериям и активирует процесс поглощения. Такое более тесное прикрепление С3b-связанных клеток или иммунных комплексов к фагоцитирующим клеткам получило название феномена иммунного прикрепления .
    2. Солюбилизация (то есть растворение) иммунных комплексов (молекулой C3b). При недостаточности комплемента развивается иммунокомплексная патология (СКВ-подобные состояния). [СКВ = системная красная волчанка ]
    3. Участие в воспалительных реакциях. Активация системы комплемента приводит к выделению из тканевых базофилов (тучных клеток) и базофильных гранулоцитов крови биологически активных веществ (гистамина, серотонина, брадикинина), которые стимулируют воспалительную реакцию (медиаторов воспаления). Биологически активные компоненты, которые образуются при расщеплении С3 и С5 , приводят к высвобождению вазоактивных аминов, таких как гистамин , из тканевых базофилов (тучных клеток) и базофильных гранулоцитов крови. В свою очередь, это сопровождается расслаблением гладкой мускулатуры и сокращением клеток эндотелия капилляров, усилением сосудистой проницаемости. Фрагмент С5а и другие продукты активации комплемента содействуют хемотаксису , агрегации и дегрануляции нейтрофилов и образованию свободных радикалов кислорода. Введение С5а животным приводило к артериальной гипотонии, сужению легочных сосудов и повышению проницаемости сосудов из-за повреждения эндотелия.
      Функции С3а:
      • выступать в роли хемотаксического фактора, вызывая миграцию нейтрофилов по направлению к месту его высвобождения;
      • индуцировать прикрепление нейтрофилов к эндотелию сосудов и друг к другу;
      • активировать нейтрофилы, вызывая в них развитие респираторного взрыва и дегрануляцию;
      • стимулировать продукцию нейтрофилами лейкотриенов.
    4. Цитотоксическая, или литическая функция. В конечной стадии активации системы комплемента образуется мембраноатакующий комплекс (МАК) из поздних компонентов комплемента, который атакует мембрану бактериальной или любой другой клетки и разрушает её.
    Фактор С3е, образующийся при расщеплении фактора С3b, обладает способностью вызывать миграцию нейтрофилов из костного мозга, и в таком случае быть причиной лейкоцитоза .

    Активация системы комплемента

    Классический путь

    Классический путь запускается активацией комплекса С1 (он включает одну молекулу С1q и по две молекулы С1r и С1s). Комплекс С1 связывается с помощью С1q с иммуноглобулинами классов М и G, связанными с антигенами. Гексамерный C1q по форме напоминает букет нераскрытых тюльпанов, «бутоны» которого могут связываться с -участком антител. Для инициации этого пути достаточно единственной молекулы IgM , активация молекулами IgG менее эффективна и требует больше молекул IgG.

    С1q связывается прямо с поверхностью патогена, это ведет к конформационным изменениям молекулы С1q, и вызывает активацию двух молекул сериновых протеаз С1r. Они расщепляют С1s (тоже сериновую протеазу). Потом комплекс С1 связывается с С4 и С2 и затем расщепляет их, образуя С2а и С4b. С4b и С2а связываются друг с другом на поверхности патогена, и образуют С3-конвертазу классического пути, С4b2а. Появление С3-конвертазы приводит к расщеплению С3 на С3а и С3b. С3b образует вместе с С2а и С4b С5-конвертазу классического пути. С5 расщепляется на C5a и C5b. C5b остается на мембране и соединяется с комплексом C4b2a3b. Потом соединяются С6, С7, С8 и С9, которая полимеризуется и возникает трубочка внутри мембраны. Тем самым нарушается осмотический баланс и в результате тургора бактерия лопается. Классический путь действует более точно, поскольку так уничтожается любая чужеродная клетка.

    Альтернативный путь

    Альтернативный путь запускается гидролизом C3 прямо на поверхности патогена. В альтернативном пути участвуют факторы В и D. С их помощью происходит образование фермента СЗbBb. Стабилизирует его и обеспечивает его длительное функционирование белок P. Далее РС3bBb активирует С3, в результате образуется С5-конвертаза и запускается образование мембраноатакующего комплекса. Дальнейшая активация терминальных компонентов комплемента происходит так же, как и по классическому пути активации комплемента. В жидкости в комплексе СЗbBb В заменяется Н-фактором и под воздействием дезактивирующего соединения (Н) превращается в С3bi. Когда микробы попадают в организм, комплекс СЗbBb начинает накапливаться на мембране, катализируя реакцию ращепления С3 на С3b и С3а, значительно увеличивая концентрацию С3b. К комплексу пропердин+С3bВb присоединяется еще одна молекула С3b. Образовавшийся комплекс расщепляет С5 на C5a и C5b. C5b остается на мембрае. Происходит дальнейшая сборка МАК с поочередным присоединением факторов С6, С7, С8 и С9. После соединения С9 с С8 происходит полимеризация С9 (до 18 молекул сшиваются друг с другом) и образуется трубочка, которая пронизывает мембрану бактерии, начинается закачка воды и бактерия лопается.

    Альтернативный путь отличается от классического следующим: при активации системы комплемента не нужно образование иммунных комплексов, он происходит без участия первых компонентов комплемента - С1, С2, С4. Он также отличается тем, что срабатывает сразу же после появления антигенов - его активаторами могут быть бактериальные полисахариды и липополисахариды (являются митогенами), вирусные частицы, опухолевые клетки.

    Лектиновый (маннозный) путь активации системы комплемента

    Лектиновый путь гомологичен классическому пути активации системы комплемента. Он использует лектин, связывающий маннозу, (MBL) - белок, подобный C1q классического пути активации, который связывается с маннозными остатками и другими сахарами на мембране, что позволяет распознавать разнообразные болезнетворные микроорганизмы. MBL - сывороточный белок, принадлежащий к группе белков коллектинов, который синтезируется преимущественно в печени и может активировать каскад комплемента, непосредственно связываясь с поверхностью патогена.

    В сыворотке крови MBL формирует комплекс с MASP-I и MASP-II (Mannan-binding lectin Associated Serine Protease, связывающие MBL сериновые протеазы). MASP-I и MASP-II весьма схожи с C1r и C1s классического пути активации и, возможно, имеют общего эволюционного предшественника. Когда несколько активных центров MBL связываются определенным образом c ориентированными маннозными остатками на фосфолипидном бислое болезнетворного микроорганизма, MASP-I и MASP-II активируются и расщепляют белок C4 на C4a и C4b, а белок С2 на C2a и C2b. Затем C4b и C2a объединяются на поверхности болезнетворного микроорганизма, формируя C3-конвертазу, а C4a и C2b действуют как хемоаттрактанты для клеток иммунной системы.

    Регуляция системы комплемента

    Система комплемента может быть очень опасной для тканей хозяина, поэтому её активация должна хорошо регулироваться. Большинство компонентов активны только в составе комплекса, при этом их активные формы способны существовать очень короткое время. Если в течение этого времени они не встретятся со следующим компонентом комплекса, то активные формы теряют связь с комплексом и становятся неактивными. Если концентрация какого-то из компонентов ниже пороговой (критической), то работа системы комплемента не приведет к физиологическим последствиям. Система комплемента регулируется специальными белками, которые находятся в плазме крови даже в большей концентрации, чем сами белки системы комплемента. Эти же белки представлены на мембранах собственных клеток организма, предохраняя их от атаки со стороны белков системы комплемента.

    Регуляторные механизмы в основном действуют в трех точках.

    1. С1. Ингибитор С1 контролирует классический и лектиновый пути активации. Действует двумя путями: ограничивает действие С4 и С2 с помощью связывания C1r- и С1s-протеаз и подобным образом выключает лектиновый путь, удаляя ферменты MASP из MBP-комплекса.
    2. С3-конвертаза. Время жизни С3-конвертазы уменьшают факторы ускорения распада. Некоторые из них находятся на поверхности собственных клеток (например, DAF и CR1). Они действуют на С3-конвертазы и классического, и альтернативного путей активации. DAF ускоряет распад С3-конвертазы альтернативного пути. СR1 (C3b/C4b receptor) расположен главным образом на поверхности эритроцитов и отвечает за удаление из плазмы крови опсонизированных иммунных комплексов. Другие регуляторные белки производятся печенью и в неактивном состоянии растворены в плазме крови. Фактор I - сериновая протеаза, расщепляющая C3b и C4b. С4-связывающий белок (C4BP) расщепляет С4 и помогает фактору I расщеплять C4b.Фактор H связывается с гликозаминогликанами, которые есть на собственных клетках, но не на клетках патогенов. Этот белок является кофактором фактора I, а также ингибирует активность C3bBb.
    3. С9.
Поделитесь с друзьями или сохраните для себя:

Загрузка...