Соленый киловатт: осмос. Осмотическая электростанция: чистая энергия соленой воды Принцип действия осмотической электростанции

Явление осмоса используется в промышленных масштабах уже более 40 лет. Только это не классический прямой осмос аббата Нолле, а так называемый обратный осмос – искусственный процесс проникновения растворителя из концентрированного в разбавленный раствор под действием давления, превышающего естественное осмотическое давление. Такая технология применяется в опреснительных и очистительных установках с начала 1970-х. Соленая морская вода нагнетается на специальную мембрану и, проходя через ее поры, лишается значительной доли минеральных солей, а заодно бактерий и даже вирусов. Для прокачивания соленой или загрязненной воды приходится затрачивать большие объемы энергии, но игра стоит свеч – на планете существует множество регионов, где дефицит питьевой воды является острейшей проблемой.

Трудно поверить, что одна лишь разница в концентрации двух растворов способна создать серьезную силу, однако это действительно так: осмотическое давление может поднять уровень морской воды на 120 м.

Опыты по превращению осмотического давления в электрическую энергию проводились различными научными группами и компаниями с начала 1970-х. Принципиальная схема этого процесса была очевидной: поток пресной (речной) воды, проникающий сквозь поры мембраны, наращивает давление в резервуаре с морской водой, тем самым позволяя раскручивать турбину. Затем отработанная солоноватая вода выбрасывается в море. Проблема была лишь в том, что классические мембраны для PRO (Pressure retarded osmosis) были слишком дороги, капризны и не обеспечивали необходимой мощности потока. С мертвой точки дело сдвинулось в конце 1980-х, когда за решение задачи взялись норвежские химики Торлейф Хольт и Тор Торсен из института SINTEF.


На схематичных изображениях осмотическую мембрану рисуют в виде стенки. На самом деле она представляет собой рулон, заключенный в цилиндрический корпус. В его многослойной структуре чередуются слои пресной и соленой воды.

Мембраны Лоэба требовали клинической чистоты для поддержания максимальной производительности. Конструкция мембранного модуля опреснительной станции предусматривала обязательное наличие первичного фильтра грубой очистки и мощного насоса, сбивавшего мусор с рабочей поверхности мембраны.

Хольт и Торсен, проанализировав характеристики большинства перспективных материалов, остановили свой выбор на недорогом модифицированном полиэтилене. Их публикации в научных журналах привлекли внимание специалистов из Statcraft, и норвежских химиков пригласили продолжить работу под покровительством энергетической компании. В 2001 году мембранная программа Statcraft получила государственный грант. На полученные средства была построена экспериментальная осмотическая установка в Сунндальсьоре для тестирования образцов мембран и обкатки технологии в целом. Площадь активной поверхности в ней была чуть выше 200 м2.

Разница между соленостью (по-научному – градиент солености) пресной и морской воды – базовый принцип работы осмотической электростанции. Чем она больше, тем выше объем и скорость потока на мембране, а следовательно, и количество энергии, вырабатываемой гидротурбиной. В Тофте пресная вода самотеком поступает на мембрану, в результате осмоса давление морской воды по ту сторону резко возрастает. Силища у осмоса колоссальная – давление может поднять уровень морской воды на 120 м.

Далее полученная разбавленная морская вода устремляется через распределитель давления на лопатки турбины и, отдав им всю свою энергию, выбрасывается в море. Распределитель давления отбирает часть энергии потока, раскручивая насосы, закачивающие морскую воду. Таким образом удается значительно повысить эффективность работы станции. По оценке Рика Стовера, главного технолога компании Energy Recovery, производящей такие устройства для опреснительных заводов, КПД передачи энергии в распределителях приближается к 98%. Точно такие же аппараты при опреснении помогают доставлять питьевую воду в жилые дома.

Как замечает Скиллхаген, в идеале осмотические электростанции нужно совмещать с опреснительными установками – соленость остаточной морской воды в последних в 10 раз выше естественного уровня. В таком тандеме эффективность выработки энергии возрастет не менее чем вдвое.

Строительные работы в Тофте начались осенью 2008 года. На территории завода по производству целлюлозы компании Sódra Cell был арендован пустующий склад. На первом этаже устроили каскад сетчатых и кварцевых фильтров для очистки речной и морской воды, а на втором – машинный зал. В декабре того же года был осуществлен подъем и монтаж мембранных модулей и распределителя давления. В феврале 2009-го группа водолазов проложила по дну залива два параллельных трубопровода – для пресной и морской воды.

Забор морской воды осуществляется в Тофте с глубин от 35 до 50 м – в этом слое ее соленость оптимальна. Кроме того, там она значительно чище, чем у поверхности. Но, несмотря на это, мембраны станции требуют регулярной чистки от забивающих микропоры органических остатков.

С апреля 2009 года электростанция эксплуатировалась в пробном режиме, а в ноябре, с легкой руки принцессы Метте-Марит, была запущена на всю катушку. Скиллхаген уверяет, что вслед за Тофте у Statcraft появятся и другие аналогичные, но более совершенные проекты. И не только в Норвегии. По его словам, подземный комплекс размером с футбольное поле способен бесперебойно снабжать электричеством целый город с 15 000 индивидуальных домов. Причем, в отличие от ветряков, такая осмотическая установка практически бесшумна, не изменяет привычный ландшафт и не влияет на здоровье человека. А о пополнении запасов соленой и пресной воды в ней позаботится сама природа.

Начала работу первая в мире электростанция, позволяющая извлекать энергию из разницы в солёности морской и пресной воды. Установка построена норвежской государственной компанией Statkraft в городке Тофте (Tofte) близ Осло.

Гигантский агрегат вырабатывает электричество, используя природное явление осмоса (osmosis), которое позволяет клеткам наших организмов не терять влагу, а растениям поддерживать вертикальное положение.

Поясним. Если разделить два водных раствора с разными концентрациями солей полупроницаемой мембраной, то молекулы воды будут стремиться перейти в ту часть, где их меньше, то есть туда, где концентрация растворённых веществ выше. Этот процесс приводит к увеличению объёма раствора в одном из отделений.

Нынешняя опытная электростанция расположена у устья реки, впадающей в Северное море. Морскую и речную воду направляют в камеру, разделённую мембраной. В отсеке с солёной водой осмос создаёт давление, эквивалентное воздействию водяного столба высотой 120 метров. Поток идёт на турбину, вращающую генератор.

Правда, если вычесть ту энергию, что идёт на подпитывающие насосы, то получается, что пока норвежская махина создаёт очень мало энергии (2-4 киловатта). Отметим, что чуть позже планируется повысить выход до 10 киловатт, а через 2-3 года создать ещё одну тестовую версию, вырабатывающую до одного мегаватта энергии.

К тому же по ходу эксплуатации установки предстоит решить массу проблем. Например, нужно будет найти способ борьбы с загрязняющими фильтры бактериями. Ведь, несмотря на предварительную очистку воды, вредоносные микроорганизмы могут заселить все участки системы.

«Без сомнений, трудности будут, – говорит глава нового предприятия Стейн Эрик Скилхаген (Stein Erik Skilhagen). – Какие именно, мы пока предсказать не в состоянии». Но ведь надо же с чего-то начинать.

Схемы, иллюстрирующие явление осмоса и строение новой станции. Подробнее о технологии и предыстории её развития можно почитать в этом PDF-документе (иллюстрации University of Miami, Statkraft).

«Потенциал технологии очень высок», — добавил на церемонии открытия министр энергетики Терье Риис-Йохансен (Terje Riis-Johansen).

По оценкам Statkraft, занимающейся разработкой и созданием установок, вырабатывающих возобновляемую энергию, общемировой годовой потенциал осмотической энергии (osmotic power) составляет 1600-1700 тераватт-часов. А это ни много ни мало – 10% всего мирового потребления энергии (и 50% энергопотребления Европы).

Многие крупные города стоят близ устья рек, так почему бы им не обзавестись подобными электростанциями? Тем более что встроить такую машину можно даже в подвал офисного здания.

Специальная мембрана, пропускающая воду, но не пропускающая молекулы соли, ставится между двумя резервуарами. В один из них наливается пресная вода, в другой - соленая. Поскольку такая система стремится к равновесию, более соленая вода как бы вытягивает пресную воду из резервуара. Если перед мембраной поставить генератор, избыточное давление будет вращать его лопасти и вырабатывать электричество.
Идею, как это часто бывает, подсказала живая природа: по этому же принципу происходит перенос веществ в клетках - такие же частично проницаемые мембраны обеспечивают упругость клеток. Осмотическое давление уже давно успешно применяется человеком при опреснении морской воды, но для выработки электричества пока использовано впервые.
На данный момент прототип вырабатывает около 1 кВт энергии. В ближайшее время эта цифра может увеличиться до 2-4 кВт. Для того чтобы можно было говорить о рентабельности производства, необходимо получить выработку около 5 кВт. Однако, это вполне реальная задача. К 2015 году планируется построить большую станцию, которая обеспечит выработку 25 МВт, что позволит питать электричеством 10000 средних домохозяйств. В перспективе же предполагается, что ОЭС станут такими мощными, что смогут вырабатывать 1700 ТВт в год, столько, сколько сейчас вырабатывает половина Европы. Главная задача на данный момент - найти более эффективные мембраны.
Игра, безусловно, стоит свеч. Преимущества осмотических станций очевидны. Во-первых, соленая вода (для работы станции подходит обычная морская вода) является неисчерпаемым природным ресурсом. Поверхность Земли на 94% покрыта водой, 97% которой является соленой, поэтому для таких станций всегда будет топливо. Во-вторых, для организации ОЭС не требуется строительства специальных площадок: подойдут любые неиспользуемые помещения уже существующих предприятий или других служебных зданий. Кроме того, ОЭС могут быть поставлены в устьях рек, где пресная вода втекает в соленое море или океан - и в этом случае не понадобится даже специально заливать в резервуары воду.

Пресная вода + морская вода = источник энергии

Обычно там, где река впадает в море, пресная вода просто перемешивается с соленой, и никакого давления, которое могло бы послужить источником энергии, там не наблюдается. Профессор Клаус-Виктор Пайнеман (Klaus-Viktor Peinemann) из Института изучения полимеров при Научно-исследовательском центре GKSS в городке Гестхахт на севере Германии, называет те условия, которые необходимы для возникновения осмотического давления: "Если перед смешиванием морскую воду и пресную разделить фильтром - специальной мембраной, пропускающей воду, но непроницаемой для соли, - то стремление растворов к термодинамическому равновесию и выравниванию концентраций сможет реализоваться только за счет того, что вода будет проникать в раствор соли, а соль в пресную воду не попадет".

Если же это происходит в закрытом резервуаре, то со стороны морской воды возникает избыточное гидростатическое давление, называемое осмотическим. Чтобы использовать его для производства энергии, в месте впадения реки в море нужно установить большой резервуар с двумя камерами, отделёнными друг от друга полупроницаемой мембраной, пропускающей воду и не пропускающей соль. Одна камера заполняется соленой, другая - пресной водой. "Возникающее при этом осмотическое давление может быть очень велико, - подчеркивает профессор Пайнеман. - Оно достигает примерно 25-ти бар, что соответствует давлению воды у подножия водопада, низвергающегося с высоты в 100 метров".

Находящаяся под столь высоким осмотическим давлением вода подается на турбину генератора, вырабатывающего электроэнергию.

Главное - правильная мембрана

Казалось бы, все просто. Потому неудивительно, что идея использовать осмос как источник энергии зародилась почти полвека назад. Но… "Одним из главных препятствий в то время стало отсутствие мембран должного качества, - говорит профессор Пайнеман. - Мембраны были чрезвычайно медленными, поэтому эффективность осмотического электрогенератора была бы очень низкой. Но в последующие 20-30 лет произошло несколько технологических прорывов. Мы научились сегодня производить чрезвычайно тонкие мембраны, а это значит, что их пропускная способность стала значительно выше".
Специалисты Научно-исследовательского центра GKSS внесли весомый вклад в разработку той самой мембраны, что позволила теперь на практике реализовать осмотическое энергопроизводство - пусть пока и сугубо экспериментальное. Один из разработчиков, Карстен Бликке (Carsten Blicke), поясняет: "Толщина мембраны составляет около 0,1 микрометра. Для сравнения: человеческий волос имеет в диаметре от 50 до 100 микрометров. Именно эта тончайшая пленка и отделяет, в конечном счете, морскую воду от пресной".

Понятно, что столь тонкая мембрана не может сама по себе выдержать высокое осмотическое давление. Поэтому она наносится на пористую, напоминающую губку, но чрезвычайно прочную основу. В целом такая перегородка выглядит как глянцевая бумага, и то, что на ней имеется пленка, невооруженным глазом заметить невозможно.

Радужные перспективы

Для строительства пилотной установки были необходимы капиталовложения в размере нескольких миллионов евро. Инвесторы, готовые пойти на риск, хоть и не сразу, все же нашлись. Финансировать новаторский проект вызвалась фирма Statkraft - одна из крупнейших энергетических компаний Норвегии, европейский лидер по части использования возобновляемых энергоресурсов. Профессор Пайнеман вспоминает: "Они услышали об этой технологии, пришли в восторг и подписали с нами договор о сотрудничестве. Евросоюз выделил на реализацию этого проекта 2 миллиона евро, остальные средства внесли фирма Statkraft и ряд других компаний, в том числе и наш Институт".

"Ряд других компаний" - это научные центры Финляндии и Португалии, а также одна из норвежских исследовательских фирм. Пилотная установка мощностью от 2 до 4 киловатт, возведенная в Осло-фьорде близ городка Тофте и торжественно вступившая сегодня в строй, предназначена для испытания и совершенствования новаторской технологии. Но руководство компании Statkraft уверено, что уже через несколько лет дело дойдет и до коммерческого использования осмоса. А суммарный мировой потенциал осмотического энергопроизводства оценивается ни много ни мало в 1600-1700 тераватт-часов в год - это примерно половина энергопотребления всего Евросоюза. Важнейшим преимуществом таких установок является их экологичность - они не шумят и не загрязняют атмосферу выбросами парниковых газов. Кроме того, их легко интегрировать в уже имеющуюся инфраструктуру.

Экологичность

Отдельно хочется отметить абсолютную экологичность данного способа добычи электроэнергии. Никаких отходов, окисляющихся материалов для резервуаров, вредных испарений. ОЭС может быть установлена даже в черте города, не нанося никакого ущерба его жителям.
Также работа ОЭС не требует других источников энергии для запуска и не зависит от климатических условий. Все это делает ОЭС практически идеальным способом выработки электроэнергии.

Пока что в мире существует всего один действующий прототип осмотической электростанции. Но в перспективе их будут сотни.

Принцип действия осмотической электростанции

Работа электростанции основана на осмотическом эффекте – свойстве специально сконструированных мембран пропускать через себя только определенные частицы. Например, установим между двумя емкостями мембрану и нальем в одну из них дистиллированную воду, а в другую – солевой раствор. Молекулы воды будут свободно проходить сквозь мембрану, а частицы соли – нет. А так как в такой ситуации жидкости будут стремиться к равновесию, то вскоре пресная вода самотеком распространится на обе емкости.

Если сделать разницу в составах растворов очень большой, то поток жидкости через мембрану будет довольно сильным. Поставив на его пути гидротурбину, можно вырабатывать электроэнергию. Это и есть простейшая конструкция осмотической электростанции. На данный момент оптимальным сырьем для нее является соленая морская вода и пресная речная – возобновляемые источники энергии.

Опытная электростанция такого типа построена в 2009 году возле норвежского города Осло. Ее производительность невелика – 4 кВт или 1 Вт с 1 кв.м. мембраны. В ближайшем будущем это показатель будет увеличен до 5 Вт с 1 кв.м. К 2015 году норвежцы намерены построить уже коммерческую осмотическую электростанцию с мощностью порядка 25 МВт.

Перспективы использования данного источника энергии

Главным преимуществом ОЭС перед другими типами электростанций является использование ею крайне дешевого сырья. По сути, оно бесплатно, ведь 92-93% поверхности планеты покрыто соленой водой, а пресную несложно получить тем же методом осмотического давления в другой установке. Установив электростанцию в устье реки, впадающей в море, можно одним махом решить все проблемы с поставками сырья. Климатические условия для работы ОЭС не важны – пока вода течет, установка работает.

При этом не создается каких-либо токсичных веществ – на выходе образуется все та же соленая вода. ОЭС абсолютно экологически безопасна, ее можно установить в непосредственной близости от жилых районов. Электростанция не наносит вред живой природе, а для ее сооружения нет необходимости перекрывать реки плотинами, как в случае с ГЭС. А низкая эффективность электростанции легко компенсируется массовостью таких установок.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Ведение

Основным направлением альтернативной энергетики является поиск и использование альтернативных (нетрадиционных) источников энергии. Источники энергии -- «встречающиеся в природе вещества и процессы, которые позволяют человеку получить необходимую для существования энергию». Альтернативный источник энергии является возобновляемым ресурсом, он заменяет собой традиционные источники энергии, функционирующие на нефти, добываемом природном газе и угле, которые при сгорании выделяют в атмосферу углекислый газ, способствующий росту парникового эффекта и глобальному потеплению. Причина поиска альтернативных источников энергии -- потребность получать её из энергии возобновляемых или практически неисчерпаемых природных ресурсов и явлений. Во внимание может браться также экологичность и экономичность

В 2010 году альтернативная энергия (не считая гидроэнергии) составляла 4,9% всей потребляемой человечеством энергии. В том числе для отопления и нагрева воды (биомасса, солнечный и геотермальный нагрев воды и отопление) 3,3%; биогорючее 0,7%; производство электроэнергии (ветровые, солнечные, геотермальные электростанции и биомасса в ТЕС) 0,9%.На возобновляемые (альтернативные) источники энергии приходится всего около 5 % мировой выработки электроэнергии в 2010г.В мае 2009 года 13 % электроэнергии в США были произведены из возобновляемых источников энергии. 9,4 % электроэнергии было выработано на гидроэлектростанциях, около 1,8 % были получены из энергии ветра, 1,3 % из биомассы, 0,4 % из геотермальных источников и 0,3 % от энергии солнца. В Австралии в 2009 году 8 % электроэнергии вырабатывается из возобновляемых источников.

В наше время людям энергии требуется всё больше и больше энергии, поскольку они придумывают всё больше и больше новых изобретений, для которых требуется энергия.

Энергетика зародилась много миллионов лет назад, когда люди научились добывать огонь: они охотились с помощью огня, получали свет и тепло, и он служил источником радости и оптимизма на протяжении многих лет. В своем реферате я расскажу о возможной экологически-чистом источнике энергии, которым люди не загрязняли бы окружающий мир.

1. Обоснование

Почему я выбираю осмотическую электростанцию, как альтернативный вид получения энергии?

Главное преимущества состоит в ее экологичности - нет шума и не загрязняют атмосферу выбросами парниковых газов; - предоставляется непрерывный возобновляемый источник энергии, с незначительными сезонными колебаниями; - легко внедрить уже имеющую инфраструктуру; Осмотическая электростанция может использоваться только в устьях рек, где пресная вода вливается в солёную. Явление осмоса широко распространено в природе, позволяя растениям поглощать влагу листьями, и обычно применяется в процессе опреснения воды.

2. Эффективность использования

Осмотическая электростанция -- стационарная энергетическая установка, основанная на принципе диффузии жидкостей (осмос).

Первая и единственная, на данный момент в мире, осмотическая электростанция построена компанией Statkraft в норвежском городке Тофте, на территории целлюлозно-бумажного комбината «Sцdra Cell Tofte». Строительство электростанции обошлось в 20 миллионов долларов и 10 лет, проведенных в исследованиях и разработке технологии. Эта электростанция пока вырабатывает очень мало энергии: примерно 2--4 киловатта. Впоследствии планируется увеличить выработку энергии до 10 киловатт.

На данный момент электростанция имеет вид экспериментальной, но в случае успешного завершения испытаний, станция будет запущена для коммерческого использования.

Казалось бы, все просто. Потому неудивительно, что идея использовать осмос как источник энергии зародилась почти полвека назад. Но… "Одним из главных препятствий стало отсутствие мембран должного качества, -об этом говорил профессор Пайнеман. - Мембраны были чрезвычайно медленными, поэтому эффективность осмотического электрогенератора была бы очень низкой. Но в последующие 20-30 лет произошло несколько технологических прорывов. Мы научились сегодня производить чрезвычайно тонкие мембраны, а это значит, что их пропускная способность стала значительно выше". Специалисты Научно-исследовательского центра GKSS внесли весомый вклад в разработку той самой мембраны, что позволила теперь на практике реализовать осмотическое энергопроизводство - пусть пока и сугубо экспериментальное. И отсюда следует, что эффективность этой энергии хоть и мала, но это легко компенсируется массовостью таких установок.

осмотический электростанция альтернативный энергетика

3. Технологии

Итак, там где реки впадают в моря и океаны мы имеем огромные источники как пресной так и солёной воды по соседству -- это идеальное место для строительства осмотических электростанций. Как же получить энергию? Наиболее простой способ -- поместить воду в резервуар, который разделен на два отсека полупроницаемой мембраной.

В один отсек подается морская вода, а в другой пресная. За счёт разной концентрации солей в морской и пресной воде, молекулы воды из пресного отсека, стремясь выровнять концентрацию соли, переходят через мембрану в морской отсек. В результате этого процесса в отсеке с морской водой формируется избыточное давление, которое в свою очередь используется для вращения гидротурбины вырабатывающей электроэнергию.

Еще нужно выделить преимущества и недостатки осматической электроэнергии.

Преимущества:

В отличие от ветра и солнца, предоставляется непрерывный возобновляемый источник энергии, с незначительными сезонными колебаниями.

Отсутствует парниковый эффект.

Недостатки:

У текущей мембраны показатель составляет 1 Вт/мІ. Показатель, который позволит сделать станции рентабельными -- 5 Вт/мІ. В мире есть несколько компаний, производящих подобные мембраны (General Electric, Dow Chemical, Hydranautics, Toray Industries), но устройства для осмотической станции должны быть гораздо тоньше производимых сейчас.

Осмотическая электростанция может использоваться только в устьях рек, где пресная вода вливается в солёную.

4. Перспективы

Главным преимуществом ОЭС перед другими типами электростанций является использование ею крайне дешевого сырья. По сути, оно бесплатно, ведь 92-93% поверхности планеты покрыто соленой водой, а пресную несложно получить тем же методом осмотического давления в другой установке. Установив электростанцию в устье реки, впадающей в море, можно одним махом решить все проблемы с поставками сырья. Климатические условия для работы ОЭС не важны - пока вода течет, установка работает.

При этом не создается каких-либо токсичных веществ - на выходе образуется все та же соленая вода. ОЭС абсолютно экологически безопасна, ее можно установить в непосредственной близости от жилых районов. Электростанция не наносит вред живой природе, а для ее сооружения нет необходимости перекрывать реки плотинами, как в случае с ГЭС.

Перспективы использования в России. Реки являются основой водного фонда России. Занимая порядка 12% территории суши, Россия отличается хорошо развитой речной сетью, а также уникальным водным побережьем, имеющим протяженность примерно 60 тыс. км. Реки России принадлежат к бассейнам трех океанов: Северного Ледовитого, Тихого и Атлантического. Таким образом у России есть огромный потенциал в освоении осмотической энергии интерес к этому источнику возобновляемой энергии растет, и ученые всего мира объединяют усилия по его освоению.

Канадская компания Hydro-Quйbec, являющаяся крупнейшим мировым производителем электроэнергии на основе гидроэнергии, совместно с Statkraft ведет исследования, связанные со следующим этапом разработки технологии PRO. Кроме того она изучает возможность создания осмотических станций вдоль береговой линии Канады.

В Японии Токийский технологический институт открыл научно-исследовательский центр по изучению осмотической энергии. По мнению его сотрудников, энергетический потенциал японских рек -- если его реализовать, построив осмотические станции в местах впадения рек в море, -- позволяет заменить 5-6 АЭС.

Заключение

Роль энергии в поддержании и дальнейшем развитии цивилизации очень велика. В современном обществе трудно найти хотя бы одну область человеческой деятельности, которая не требовала бы - прямо или косвенно - больше энергии, чем ее могут дать мускулы человека. Потребление энергии - важный показатель жизненного уровня. В те времена, когда человек добывал пищу, собирая лесные плоды и охотясь на животных, ему требовалось в сутки около 8 МДж энергии. После овладения огнем эта величина возросла до 16 МДж: в примитивном сельскохозяйственном обществе она составляла 50 МДж, а в более развитом - 100 МДж.

В процессе развития цивилизации много раз происходила смена традиционных источников энергии на новые, более совершенные не потому, что старый источник был исчерпан.

Самым мощным источником энергии является ядерный - лидер энергетики. Запасы урана, если сравнивать их с запасами угля, не столь уж и велики. Но зато на единицу веса он содержит в себе энергии в миллионы раз больше, чем уголь. При получении электроэнергии на АЭС нужно затратить, считается, в сто тысяч раз меньше средств и труда, чем при извлечении энергии из угля. И ядерное горючее приходит на смену нефти и углю... Всегда было так: следующий источник энергии был и более мощным. То была, если можно так выразиться, "воинствующая" линия энергетики. В будущем при интенсивном развитии энергетики возникнут рассредоточенные источники энергии не слишком большой мощности, но зато с высоким КПД, экологически чистые, удобные в обращении. Например - быстрый старт электрохимической энергетики, которую позднее, видимо, дополнит энергетика солнечная. Энергетика очень быстро аккумулирует, ассимилирует, вбирает в себя все самые новейшие идей, изобретения, достижения науки. Это и понятно: энергетика связана буквально со всем, и все тянется к энергетике, зависит от нее. Поэтому энергохимия, водородная энергетика, космические электростанции, энергия, запечатанная в антивеществе, кварках, "черных дырах", вакууме, - это всего лишь наиболее яркие вехи, штрихи, отдельные черточки того сценария, который пишется на наших глазах и который можно назвать Завтрашним Днем Энергетики.

В заключение можно сделать вывод, что альтернативные формы использования энергии неисчислимы при условии, что нужно разработать для этого эффективные и экономичные методы. Главное - проводить развитие энергетики в правильном направлении.

Размещено на Allbest.ru

...

Подобные документы

    Виды классических источников энергии. Основные причины, указывающие на важность скорейшего перехода к альтернативным источникам энергии. Молния как источник грозовых перенапряжений. Преимущества и недостатки, принцип действия грозовой электростанции.

    курсовая работа , добавлен 20.05.2016

    Основные виды альтернативной энергии. Биоэнергетика, энергия ветра, Солнца, приливов и отливов, океанов. Перспективные способы получения энергии. Совокупная мощность ветроэлектростанций Китая, Индии и США. Доля альтернативной энергетики в России.

    презентация , добавлен 25.05.2016

    Типовые источники энергии. Проблемы современной энергетики. "Чистота" получаемой, производимой энергии как преимущество альтернативной энергетики. Направления развития альтернативных источников энергии. Водород как источник энергии, способы его получения.

    реферат , добавлен 30.05.2016

    Основные достоинства и недостатки геотермальной энергии. Мировой потенциал геотермальной энергии и перспективы его использования. Система геотермального теплоснабжения, строительство геотермальных электростанций. Востребованность геотермальной энергетики.

    контрольная работа , добавлен 31.10.2011

    История развития геотермальной энергетики и преобразование геотермальной энергии в электрическую и тепловую. Стоимость электроэнергии, вырабатываемой геотермальными элетростанциями. Перспективность использования альтернативной энергии и КПД установок.

    реферат , добавлен 09.07.2008

    Проблемы развития и существования энергетики. Типы альтернативных источников энергии и их развитие. Источники и способы использования геотермальной энергии. Принцип работы геотермальной электростанции. Общая принципиальная схема ГеоЭС и ее компоненты.

    курсовая работа , добавлен 06.05.2016

    Типология альтернативной энергетики. Возобновляемая энергия в арабских странах. Ядерная энергетика и ее резервы в арабских странах. Переход к использованию альтернативных источников энергии. Достигнутые результаты в сфере альтернативной энергетики.

    контрольная работа , добавлен 08.01.2017

    Существующие источники энергии. Типы электростанций. Проблемы развития и существования энергетики. Обзор альтернативных источников энергии. Устройство и принцип работы приливных электростанций. Расчет энергии. Определение коэффициента полезного действия.

    курсовая работа , добавлен 23.04.2016

    Основные сведения об альтернативной энергетики. Преимущества и недостатки вакуумных коллекторов. Снижение зависимости от поставок энергоносителей. Применение фокусирующих коллекторов. Преимущества использования экологически чистой солнечной энергии.

    реферат , добавлен 21.03.2015

    Обзор развития современной энергетики и ее проблемы. Общая характеристика альтернативных источников получения энергии, возможности их применения, достоинства и недостатки. Разработки, применяемые в настоящее время для нетрадиционного получения энергии.

Поделитесь с друзьями или сохраните для себя:

Загрузка...