Гиперболические функции. Справочные данные по гиперболическим функциям – свойства, графики, формулы Определение гиперболических функций

Его можно записать в параметрическом виде, используя гиперболические функции (этим и объясняется их название).

Обозначим y= b·sht , тогда х2 / а2=1+sh2t =ch2t . Откуда x=± a·cht .

Таким образом мы приходим к следующим параметрическим уравнениям гиперболы:

У= в ·sht , – < t < . (6)

Рис. 1.

Знак ""+"" в верхней формуле (6) соответствует правой ветви гиперболы, а знак ""– "" - левой (см. рис. 1). Вершинам гиперболы А(– а; 0) и В(а; 0) соответствует значение параметра t=0.

Для сравнения можно привести параметрические уравнения эллипса, использующие тригонометрические функции:

X=а·cost ,

Y=в·sint , 0 t 2p . (7)

3. Очевидно, что функция y=chx является четной и принимает только положительные значения. Функция y=shx – нечетная, т.к. :

Функции y=thx и y=cthx являются нечетными как частные четной и нечетной функции. Отметим, что в отличие от тригонометрических, гиперболические функции не являются периодическими.

4. Исследуем поведение функции y= cthx в окрестности точки разрыва х=0:

Таким образом ось Оу является вертикальной асимптотой графика функции y=cthx . Определим наклонные (горизонтальные) асимптоты:

Следовательно, прямая у=1 является правой горизонтальной асимптотой графика функции y=cthx . В силу нечетности данной функции ее левой горизонтальной асимптотой является прямая у= –1. Нетрудно показать, что эти прямые одновременно являются асимптотами и для функции y=thx. Функции shx и chx асимптот не имеют.

2) (chx)"=shx (показывается аналогично).

4)

Здесь так же прослеживается определенная аналогия с тригонометрическими функциями. Полная таблица производных всех гиперболических функций приведена в разделе IV.


Тангенс, котангенс

Определения гиперболических функций, их области определений и значений

sh x - гиперболический синус
, -∞ < x < +∞; -∞ < y < +∞ .
ch x - гиперболический косинус
, -∞ < x < +∞; 1 ≤ y < +∞ .
th x - гиперболический тангенс
, -∞ < x < +∞; - 1 < y < +1 .
cth x - гиперболический котангенс
, x ≠ 0 ; y < -1 или y > +1 .

Графики гиперболических функций

График гиперболического синуса y = sh x

График гиперболического косинуса y = ch x

График гиперболического тангенса y = th x

График гиперболического котангенса y = cth x

Формулы с гиперболическими функциями

Связь с тригонометрическими функциями

sin iz = i sh z ; cos iz = ch z
sh iz = i sin z ; ch iz = cos z
tg iz = i th z ; ctg iz = - i cth z
th iz = i tg z ; cth iz = - i ctg z
Здесь i - мнимая единица, i 2 = -1 .

Применяя эти формулы к тригонометрическим функциям, получаем формулы, связывающие гиперболические функции.

Четность

sh(-x) = - sh x ; ch(-x) = ch x .
th(-x) = - th x ; cth(-x) = - cth x .

Функция ch(x) - четная. Функции sh(x) , th(x) , cth(x) - нечетные.

Разность квадратов

ch 2 x - sh 2 x = 1 .

Формулы суммы и разности аргументов

sh(x ± y) = sh x ch y ± ch x sh y ,
ch(x ± y) = ch x ch y ± sh x sh y ,
,
,

sh 2 x = 2 sh x ch x ,
ch 2 x = ch 2 x + sh 2 x = 2 ch 2 x - 1 = 1 + 2 sh 2 x ,
.

Формулы произведений гиперболического синуса и косинуса

,
,
,

,
,
.

Формулы суммы и разности гиперболических функций

,
,
,
,
.

Связь гиперболического синуса и косинуса с тангенсом и котангенсом

, ,
, .

Производные

,

Интегралы от sh x, ch x, th x, cth x

,
,
.

Разложения в ряды

Обратные функции

Ареасинус

При - ∞ < x < ∞ и - ∞ < y < ∞ имеют место формулы:
,
.

Ареакосинус

При 1 ≤ x < ∞ и 0 ≤ y < ∞ имеют место формулы:
,
.

Вторая ветвь ареакосинуса расположена при 1 ≤ x < ∞ и - ∞ < y ≤ 0 :
.

Ареатангенс

При - 1 < x < 1 и - ∞ < y < ∞ имеют место формулы:
,

Введение

В математике и её приложениях к естествознанию и технике находят широкое применение показательные функции. Это, в частности, объясняется тем, что многие изучаемые в естествознании явления относятся к числу так называемых процессов органического роста, в которых скорости изменения участвующих в них функций пропорциональны величинам самих функций.

Если обозначить через функцию, а через аргумент, то дифференциальный закон процесса органического роста может быть записан в виде где некоторый постоянный коэффициент пропорциональности.

Интегрирование этого уравнения приводит к общему решению в виде показательной функции

Если задать начальное условие при, то можно определить произвольную постоянную и, таким образом, найти частное решение которое представляет собой интегральный закон рассматриваемого процесса.

К процессам органического роста относятся при некоторых упрощающих предположениях такие явления, как, например, изменение атмосферного давления в зависимости от высоты над поверхностью Земли, радиоактивный распад, охлаждение или нагревание тела в окружающей среде постоянной температуры, унимолекулярная химическая реакция (например, растворение вещества в воде), при которой имеет место закон действия масс (скорость реакции пропорциональна наличному количеству реагирующего вещества), размножение микроорганизмов и многие другие.

Возрастание денежной суммы вследствие начисления на неё сложных процентов (проценты на проценты) также представляет собой процесс органического роста.

Эти примеры можно было бы продолжать.

Наряду с отдельными показательными функциями в математике и её приложениях находят применение различные комбинации показательных функций, среди которых особое значение имеют некоторые линейные и дробно-линейные комбинации функций и так называемые гиперболические функции. Этих функций шесть, для них введены следующие специальные наименования и обозначения:

(гиперболический синус),

(гиперболический косинус),

(гиперболический тангенс),

(гиперболический котангенс),

(гиперболический секанс),

(гиперболический секанс).

Возникает вопрос, почему даны именно такие названия, причём здесь гипербола и известные из тригонометрии названия функций: синус, косинус, и т. д.? Оказывается, что соотношения, связывающие тригонометрические функции с координатами точек окружности единичного радиуса, аналогичны соотношениям, связывающим гиперболические функции с координатами точек равносторонней гиперболы с единичной полуосью. Этим как раз и оправдывается наименование гиперболических функций.

Гиперболические функции

Функции, заданные формулами называют соответственно гиперболическим косинусом и гиперболическим синусом.

Эти функции определены и непрерывны на, причем - четная функция, а - нечетная функция.

Рисунок 1.1 - Графики функций

Из определения гиперболических функций и следует, что:

По аналогии с тригонометрическими функциями гиперболические тангенс и котангенс определяются соответственно формулами

Функция определена и непрерывна на, а функция определена и непрерывна на множестве с выколотой точкой; обе функции - нечетные, их графики представлены на рисунках ниже.

Рисунок 1.2 - График функции

Рисунок 1.3 - График функции

Можно показать, что функции и - строго возрастающие, а функция - строго убывающая. Поэтому указанные функции обратимы. Обозначим обратные к ним функции соответственно через.

Рассмотрим функцию, обратную к функции, т.е. функцию. Выразим ее через элементарные. Решая уравнение относительно, получаем Так как, то, откуда

Заменяя на, а на, находим формулу для функции, обратной для гиперболического синуса.

Другие обозначения: sinh x, Sh x, cosh x, Ch x, tgh x, tanh x, Th x. Графики см. на рис. 1.

Основные соотношения:


Геометрическая Г. ф. аналогична интерпретации тригонометрических функций (рис. 2). Параметрич. уравнения гиперболы позволяют истолковать абсциссу и ординату точки Мравносторонней гиперболы как гиперболнч. косинус и синус; гиперболич. тангенс-отрезок АВ. Параметр tравен удвоенной площади сектора ОАМ, где AM - дуга гиперболы. Для точки (при ) параметр tотрицателен. Обратные гиперболические функции определяются формулами:


Производные и основные интегралы от Г. ф.:


Во всей плоскости комплексного переменного z Г. ф. и могут быть определены рядами:


таким образом,

Имеются обширные таблицы для Г. ф. Значения Г. ф. можно получить также из таблиц для е х и е -х.

Лит. : Янке Е., Эмде Ф., Леш Ф., Специальные функции. Формулы, графики, таблицы, 2 изд., пер. с нем., М., 1968; Таблицы круговых и гиперболических синусов и косинусов в радиацией мере угла, М., 1958; Таблицы е x и е -x , М., 1955. В. И. Битюцков.


Математическая энциклопедия. - М.: Советская энциклопедия . И. М. Виноградов . 1977-1985 .

Смотреть что такое "ГИПЕРБОЛИЧЕСКИЕ ФУНКЦИИ" в других словарях:

    Функции, определяемые формулами: (гиперболический синус), (гиперболический косинус). Иногда рассматривается также гиперболический тангенс: (графики Г. ф. см. на рис. 1). Г. ф.… …

    Функции, определяемые формулами: (гиперболический синус), (гиперболический косинус), (гиперболический тангенс) … Большой Энциклопедический словарь

    Функции, определяемые формулами: shx = (ex e x)/2(гинерболич. синус), chх (еx + е к)/2 (гиперболич. косинус), thх = shx/chx (гиперболич. тангенс). Графики Г. ф. см. на рис …

    Семейство элементарных функций, выражающихся через экспоненту и тесно связанных с тригонометрическими функциями. Содержание 1 Определение 1.1 Геометрическое определение … Википедия

    Функции, определяемые формулами: shx = (ex – e x)/2 (гиперболический синус), chx = (ex + e x)/2 (гиперболический косинус), thx = shx/chx (гиперболический тангенс). Графики гиперболических функций см. на рис. * * * ГИПЕРБОЛИЧЕСКИЕ ФУНКЦИИ… … Энциклопедический словарь

    Функции. определяемые ф лами: (гиперболич. синус), (гиперболич. косинус), (вставить рисунки!!!) Графики гиперболических функций … Большой энциклопедический политехнический словарь

    По аналогии с тригонометрическими функциями Sinx, cosx, определяемыми, как известно, при помощи Эйлеровых формул sinx = (exi e xi)/2i, cosx = (exi + e xi)/2 (где е есть основание нэперовых логарифмов, a i = √[ 1]); иногда вводятся в рассмотрение… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Функции, обратные по отношению к гиперболическим функциям (См. Гиперболические функции) sh х, ch х, th х; они выражаются формулами (читается: ареа синус гиперболический, ареа косинус гиперболический, ареа тангенс… … Большая советская энциклопедия

    Функции, обратные к гиперболич. функциям; выражаются формулами … Естествознание. Энциклопедический словарь

    Обратные гиперболические функции определяются как обратные функции к гиперболическим функциям. Эти функции определяют площадь сектора единичной гиперболы x2 − y2 = 1 аналогично тому, как обратные тригонометрические функции определяют длину… … Википедия

Книги

  • Гиперболические функции , Янпольский А.Р.. В книге излагаются свойства гиперболических и обратных гиперболических функций и даются соотношения между ними и другими элементарными функциями. Показаны применения гиперболических функций к…
Поделитесь с друзьями или сохраните для себя:

Загрузка...